isradleaflet.knit

ISRaD Credits

Updated: 02-Dec-2022

Main compilations

ISRaD has been built based on many individual studies and the following compilations:

  • He, Y., Trumbore, S. E., Torn, M. S., Harden, J. W., Vaughn, L. J. S., Allison, S. D., & Randerson, J. T. (2016). Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science, 353(6306), 1419–1424. https://doi:10.1126/science.aad4273
  • Mathieu, J. A., Hatté, C., Balesdent, J., & Parent, É. (2015). Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles. Global Change Biology, 21(11), 4278–4292. https://doi:10.1111/gcb.13012
  • Estop‐Aragonés, C., Olefeldt, D., Abbott, B. W., Chanton, J. P., Czimczik, C. I., Dean, J. F., et al. (2020). Assessing the potential for mobilization of old soil carbon after permafrost thaw: A synthesis of 14C measurements from the northern permafrost region. Global Biogeochemical Cycles, 34, e2020GB006672. https://doi.org/10.1029/2020GB006672
  • Treat, C. C., Jones, M.C., Camill, P., Gallego-Sala, A., et al. (2016). Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils, J. Geophys. Res. Biogeosciences, 121, 78–94. https://doi:10.1002/2015JG003061

Studies within ISRaD

Currently there are 432 entries in ISRaD, which are from the following publications:

  • Abbott, M. B., & Stafford, T. W. (1996). Radiocarbon geochemistry of modern and ancient arctic lake systems, baffin island, canada. Quaternary Research, 45(3), 300–311. https://doi.org/10.1006/qres.1996.0031

  • Treat, C. C., Jones, M.C., Camill, P., Gallego-Sala, A., et al. (2016). Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils, J. Geophys. Res. Biogeosciences, 121, 78–94. https://doi:10.1002/2015JG003061

  • Agnelli, A., Trumbore, S. E., Corti, G., & Ugolini, F. C. (2002). The dynamics of organic matter in rock fragments in soil investigated by 14C dating and measurements of 13C. European Journal of Soil Science, 53(1), 147–159. https://doi.org/10.1046/j.1365-2389.2002.00432.x

-Aiken, G. R., Spencer, R. G. M., Striegl, R. G., Schuster, P. F., & Raymond, P. A. (2014). Influences of glacier melt and permafrost thaw on the age of dissolved organic carbon in the yukon river basin. Global Biogeochemical Cycles, 28(5), 525–537. https://doi.org/10.1002/2013gb004764

-Allard, M., & Seguin, M. K. (1987). The holocene evolution of permafrost near the tree line, on the eastern coast of hudson bay (northern quebec). Canadian Journal of Earth Sciences, 24(11), 2206–2222. https://doi.org/10.1139/e87-209

Amon, R. M. W., & Meon, B. (2004). The biogeochemistry of dissolved organic matter and nutrients in two large arctic estuaries and potential implications for our understanding of the arctic ocean system. *Marine Chemistry*, *92*(1-4), 311–330. <https://doi.org/10.1016/j.marchem.2004.06.034>
Anderson, J. A. R., & Muller, J. (1975). Palynological study of a holocene peat and a miocene coal deposit from NW borneo. *Review of Palaeobotany and Palynology*, *19*(4), 291–351. <https://doi.org/10.1016/0034-6667(75)90049-4>
Andersson, R. A., Kuhry, P., Meyers, P., Zebühr, Y., Crill, P., & Mörth, M. (2011). Impacts of paleohydrological changes on n-alkane biomarker compositions of a holocene peat sequence in the eastern european russian arctic. *Organic Geochemistry*, *42*(9), 1065–1075. <https://doi.org/10.1016/j.orggeochem.2011.06.020>
Andreev, A. A., Klimanov, V. A., & Sulerzhitsky, L. D. (1997). Younger dryas pollen records from central and southern yakutia. *Quaternary International*, *41-42*, 111–117. <https://doi.org/10.1016/s1040-6182(96)00042-0>
Andreev, A. A., Klimanov, V. A., & Sulerzhitsky, L. D. (2001). Vegetation and climate history of the yana river lowland, russia, during the last 6400yr. *Quaternary Science Reviews*, *20*(1-3), 259–266. <https://doi.org/10.1016/s0277-3791(00)00118-9>
Andreev, A. A., Tarasov, P. E., Klimanov, V. A., Melles, M., Lisitsyna, O. M., & Hubberten, H.-W. (2004). Vegetation and climate changes around the lama lake, taymyr peninsula, russia during the late pleistocene and holocene. *Quaternary International*, *122*(1), 69–84. <https://doi.org/10.1016/j.quaint.2004.01.032>
Anshari, G. Z., Afifudin, M., Nuriman, M., Gusmayanti, E., Arianie, L., Susana, R., Nusantara, R. W., Sugardjito, J., & Rafiastanto, A. (2010). Drainage and land use impacts on changes in selected peat properties and peat degradation in west kalimantan province, indonesia. *Biogeosciences*, *7*(11), 3403–3419. <https://doi.org/10.5194/bg-7-3403-2010>
Anshari, G., Kershaw, A. P., Kaars, S. V. D., & Jacobsen, G. (2004). Environmental change and peatland forest dynamics in the lake sentarum area, west kalimantan, indonesia. *Journal of Quaternary Science*, *19*(7), 637–655. <https://doi.org/10.1002/jqs.879>
Anthony, K. W., Daanen, R., Anthony, P., Deimling, T. S. von, Ping, C.-L., Chanton, J. P., & Grosse, G. (2016). Methane emissions proportional to permafrost carbon thawed in arctic lakes since the 1950s. *Nature Geoscience*, *9*(9), 679–682. <https://doi.org/10.1038/ngeo2795>
Aravena, R., Warner, B. G., Charman, D. J., Belyea, L. R., Mathur, S. P., & Dinel, H. (1993). Carbon isotopic composition of deep carbon gases in an ombrogenous peatland, northwestern ontario, canada. *Radiocarbon*, *35*(2), 271–276. <https://doi.org/10.1017/s0033822200064948>
Arlen-Pouliot, Y., & Bhiry, N. (2005). Palaeoecology of a palsa and a filled thermokarst pond in a permafrost peatland, subarctic québec, canada. *The Holocene*, *15*(3), 408–419. <https://doi.org/10.1191/0959683605hl818rp>
Atarashi-Andoh, M., Koarashi, J., Ishizuka, S., & Hirai, K. (2012). Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures. *Agricultural and Forest Meteorology*, *152*, 149–158. <https://doi.org/10.1016/j.agrformet.2011.09.015>
Baied, C. A., & Wheeler, J. C. (1993). Evolution of high andean puna ecosystems: Environment, climate, and culture change over the last 12,000 years in the central andes. *Mountain Research and Development*, *13*(2), 145. <https://doi.org/10.2307/3673632>
Baisden, W. T., Amundson, R., Cook, A. C., & Brenner, D. L. (2002). Turnover and storage of c and n in five density fractions from california annual grassland surface soils. *Global Biogeochemical Cycles*, *16*(4), 64-1-64-16. <https://doi.org/10.1029/2001gb001822>
Baisden, W. Troy, & Parfitt, R. L. (2007). Bomb 14C enrichment indicates decadal c pool in deep soil? *Biogeochemistry*, *85*(1), 59–68. <https://doi.org/10.1007/s10533-007-9101-7>
Baisden, W. Troy, Parfitt, R. L., Ross, C., Schipper, L. A., & Canessa, S. (2011). Evaluating 50 years of time-series soil radiocarbon data: Towards routine calculation of robust c residence times. *Biogeochemistry*, *112*(1-3), 129–137. <https://doi.org/10.1007/s10533-011-9675-y>
Basile-Doelsch, I., Amundson, R., Stone, W. E. E., Masiello, C. A., Bottero, J. Y., Colin, F., Masin, F., Borschneck, D., & Meunier, J. D. (2005). Mineralogical control of organic carbon dynamics in a volcanic ash soil on la reunion. *European Journal of Soil Science*, *0*(0), 050912034650042. <https://doi.org/10.1111/j.1365-2389.2005.00703.x>
BAUER, I. E., & VITT, D. H. (2011). Peatland dynamics in a complex landscape: Development of a fen-bog complex in the sporadic discontinuous permafrost zone of northern alberta, canada. *Boreas*, *40*(4), 714–726. <https://doi.org/10.1111/j.1502-3885.2011.00210.x>
Bauters, M., Vercleyen, O., Vanlauwe, B., Six, J., Bonyoma, B., Badjoko, H., Hubau, W., Hoyt, A., Boudin, M., Verbeeck, H., & Boeckx, P. (2019). Long-term recovery of the functional community assembly and carbon pools in an african tropical forest succession. *Biotropica*, *51*(3), 319–329. <https://doi.org/10.1111/btp.12647>
Beaulieu-Audy, V., Garneau, M., Richard, P. J. H., & Asnong, H. (2009). Holocene palaeoecological reconstruction of three boreal peatlands in the la grande rivière region, québec, canada. *The Holocene*, *19*(3), 459–476. <https://doi.org/10.1177/0959683608101395>
Becker-Heidmann, P., Andresen, O., Kalmar, D., Scharpenseel, H.-W., & Yaalon, D. H. (2002). Carbon dynamics in vertisols as revealed by high-resolution sampling. *Radiocarbon*, *44*(1), 63–73. <https://doi.org/10.1017/s0033822200064687>
Becker-Heidmann, P., & Scharpenseel, H.-W. (1986). Thin layer d13C and D14C monitoring of “lessive” soil profiles. *Radiocarbon*, *28*(2A), 383–390. <https://doi.org/10.1017/s0033822200007499>
Becker-Heidmann, P., & Scharpenseel, H.-W. (1989). Carbon isotope dynamics in some tropical soils. *Radiocarbon*, *31*(03), 672–679. <https://doi.org/10.1017/s0033822200012273>
Beem-Miller, J., & Sierra, C. A. (2022). *NEON soil radiocarbon data*. Zenodo. <https://doi.org/10.5281/ZENODO.7096827>
Behling, H. (1995). Investigations into the late pleistocene and holocene history of vegetation and climate in santa catarina (s brazil). *Vegetation History and Archaeobotany*, *4*(3). <https://doi.org/10.1007/bf00203932>
Behling, H., & Pillar, V. D. (2006). Late quaternary vegetation, biodiversity and fire dynamics on the southern brazilian highland and their implication for conservation and management of modern Araucaria forest and grassland ecosystems. *Philosophical Transactions of the Royal Society B: Biological Sciences*, *362*(1478), 243–251. <https://doi.org/10.1098/rstb.2006.1984>
Beilman, D. W., Massa, C., Nichols, J. E., Timm, O. E., Kallstrom, R., & Dunbar-Co, S. (2019). Dynamic holocene vegetation and north pacific hydroclimate recorded in a mountain peatland, moloka‘i, hawai‘i. *Frontiers in Earth Science*, *7*. <https://doi.org/10.3389/feart.2019.00188>
Bellen, S. van, Garneau, M., & Booth, R. K. (2011). Holocene carbon accumulation rates from three ombrotrophic peatlands in boreal quebec, canada: Impact of climate-driven ecohydrological change. *The Holocene*, *21*(8), 1217–1231. <https://doi.org/10.1177/0959683611405243>
Bellisario, L. M., Bubier, J. L., Moore, T. R., & Chanton, J. P. (1999). Controls on CH4 emissions from a northern peatland. *Global Biogeochemical Cycles*, *13*(1), 81–91. <https://doi.org/10.1029/1998gb900021>
Benfield, A. J., Yu, Z., & Benavides, J. C. (2021). Environmental controls over holocene carbon accumulation in distichia muscoides-dominated peatlands in the eastern andes of colombia. *Quaternary Science Reviews*, *251*, 106687. <https://doi.org/10.1016/j.quascirev.2020.106687>
Benner, R., Benitez-Nelson, B., Kaiser, K., & Amon, R. M. W. (2004). Export of young terrigenous dissolved organic carbon from rivers to the arctic ocean. *Geophysical Research Letters*, *31*(5), n/a–n/a. <https://doi.org/10.1029/2003gl019251>
Berg, B., & Gerstberger, P. (2004). Element fluxes with litterfall in mature stands of norway spruce and european beech in bavaria, south germany. In *Ecological studies* (pp. 271–278). Springer Berlin Heidelberg. <https://doi.org/10.1007/978-3-662-06073-5_16>
Berhe, A. A., Harden, J. W., Torn, M. S., Kleber, M., Burton, S. D., & Harte, J. (2012). Persistence of soil organic matter in eroding versus depositional landform positions. *Journal of Geophysical Research: Biogeosciences*, *117*(G2), n/a–n/a. <https://doi.org/10.1029/2011jg001790>
Bhiry, N., Payette, S., & C. Robert, Élisabeth. (2007). Peatland development at the arctic tree line (québec, canada) influenced by flooding and permafrost. *Quaternary Research*, *67*(3), 426–437. <https://doi.org/10.1016/j.yqres.2006.11.009>
Biedenbender, S. H., McClaran, M. P., Quade, J., & Weltz, M. A. (2004). Landscape patterns of vegetation change indicated by soil carbon isotope composition. *Geoderma*, *119*(1-2), 69–83. <https://doi.org/10.1016/s0016-7061(03)00234-9>
Billings, W. D. (1987). Carbon balance of alaskan tundra and taiga ecosystems: Past, present and future. *Quaternary Science Reviews*, *6*(2), 165–177. <https://doi.org/10.1016/0277-3791(87)90032-1>
Binkley, D., & Resh, S. C. (1999). Rapid changes in soils following eucalyptus afforestation in hawaii. *Soil Science Society of America Journal*, *63*(1), 222–225. <https://doi.org/10.2136/sssaj1999.03615995006300010032x>
Bird, M., Santrùcková, H., Lloyd, J., & Lawson, E. (2002). The isotopic composition of soil organic carbon on a north-south transect in western canada. *European Journal of Soil Science*, *53*(3), 393–403. <https://doi.org/10.1046/j.1365-2389.2002.00444.x>
Blyakharchuk, T. A. (2003). Four new pollen sections tracing the holocene vegetational development of the southern part of the west siberan lowland. *The Holocene*, *13*(5), 715–731. <https://doi.org/10.1191/0959683603hl658rp>
Blyakharchuk, T. A., & Sulerzhitsky, L. D. (1999). Holocene vegetational and climatic changes in the forest zone of western siberia according to pollen records from the extrazonal palsa bog bugristoye. *The Holocene*, *9*(5), 621–628. <https://doi.org/10.1191/095968399676614561>
Bol, R., Bolger, T., Cully, R., & Little, D. (2003). Recalcitrant soil organic materials mineralize more efficiently at higher temperatures. *Journal of Plant Nutrition and Soil Science*, *166*(3), 300–307. <https://doi.org/10.1002/jpln.200390047>
BOL, R., HUANG, Y., MERIDITH, J. A., EGLINTON, G., HARKNESS, D. D., & INESON, P. (1996). The 14C age and residence time of organic matter and its lipid constituents in a stagnohumic gley soil. *European Journal of Soil Science*, *47*(2), 215–222. <https://doi.org/10.1111/j.1365-2389.1996.tb01392.x>
BORKEN, W., SAVAGE, K., DAVIDSON, E. A., & TRUMBORE, S. E. (2005). Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. *Global Change Biology*, *12*(2), 177–193. <https://doi.org/10.1111/j.1365-2486.2005.001058.x>
Bouchard, F., Laurion, I., Pr&amp\mathsemicolon#x0117\mathsemicolonskienis, V., Fortier, D., Xu, X., & Whiticar, M. J. (2015). Modern to millennium-old greenhouse gases emitted from ponds and lakes of the eastern canadian arctic (bylot island, nunavut). *Biogeosciences*, *12*(23), 7279–7298. <https://doi.org/10.5194/bg-12-7279-2015>
Bukombe, B., Fiener, P., Hoyt, A. M., & Doetterl, S. (2021). *Controls on heterotrophic soil respiration and carbon cycling in geochemically distinct african tropical forest soils*. <https://doi.org/10.5194/soil-2020-96>
Butman, D., Raymond, P., Oh, N.-H., & Mull, K. (2007). Quantity, 14C age and lability of desorbed soil organic carbon in fresh water and seawater. *Organic Geochemistry*, *38*(9), 1547–1557. <https://doi.org/10.1016/j.orggeochem.2007.05.011>
Butnor, J. R., Samuelson, L. J., Johnsen, K. H., Anderson, P. H., Benecke, C. A. G., Boot, C. M., Cotrufo, M. F., Heckman, K. A., Jackson, J. A., Stokes, T. A., & Zarnoch, S. J. (2017). Vertical distribution and persistence of soil organic carbon in fire-adapted longleaf pine forests. *Forest Ecology and Management*, *390*, 15–26. <https://doi.org/10.1016/j.foreco.2017.01.014>
Camargo, P. B. D., Trumbore, S. E., Martinelli, LuiZ. A., Davidson, EriC. A., Nepstad, D. C., & Victoria, R. L. (1999). Soil carbon dynamics in regrowing forest of eastern amazonia. *Global Change Biology*, *5*(6), 693–702. <https://doi.org/10.1046/j.1365-2486.1999.00259.x>
Camill, P., Barry, A., Williams, E., Andreassi, C., Limmer, J., & Solick, D. (2009). Climate-vegetation-fire interactions and their impact on long-term carbon dynamics in a boreal peatland landscape in northern manitoba, canada. *Journal of Geophysical Research*, *114*(G4). <https://doi.org/10.1029/2009jg001071>
Caner, L., Toutain, F., Bourgeon, G., & Herbillon, A.-J. (2003). Occurrence of sombric-like subsurface a horizons in some andic soils of the nilgiri hills (southern india) and their palaeoecological significance. *Geoderma*, *117*(3-4), 251–265. <https://doi.org/10.1016/s0016-7061(03)00127-7>
Carbone, M. S., Richardson, A. D., Chen, M., Davidson, E. A., Hughes, H., Savage, K. E., & Hollinger, D. Y. (2016). Constrained partitioning of autotrophic and heterotrophic respiration reduces model uncertainties of forest ecosystem carbon fluxes but not stocks. *Journal of Geophysical Research: Biogeosciences*, *121*(9), 2476–2492. <https://doi.org/10.1002/2016jg003386>
Carbone, M. S., Still, C. J., Ambrose, A. R., Dawson, T. E., Williams, A. P., Boot, C. M., Schaeffer, S. M., & Schimel, J. P. (2011). Seasonal and episodic moisture controls on plant and microbial contributions to soil respiration. *Oecologia*, *167*(1), 265–278. <https://doi.org/10.1007/s00442-011-1975-3>
Carbone, M. S., Winston, G. C., & Trumbore, S. E. (2008). Soil respiration in perennial grass and shrub ecosystems: Linking environmental controls with plant and microbial sources on seasonal and diel timescales. *Journal of Geophysical Research: Biogeosciences*, *113*(G2), n/a–n/a. <https://doi.org/10.1029/2007jg000611>
Castanha, C., Trumbore, S. E., & Amundso, R. (2012). Mineral and organic matter characterization of density fractions of basalt- and granite-derived soils in montane california. In *An introduction to the study of mineralogy*. InTech. <https://doi.org/10.5772/36735>
Chabbi, A., Kögel-Knabner, I., & Rumpel, C. (2009). Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile. *Soil Biology and Biochemistry*, *41*(2), 256–261. <https://doi.org/10.1016/j.soilbio.2008.10.033>
Chasar, L. S., Chanton, J. P., Glaser, P. H., Siegel, D. I., & Rivers, J. S. (2000). Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon, and CH4 in a northern Minnesota peatland. *Global Biogeochemical Cycles*, *14*(4), 1095–1108. <https://doi.org/10.1029/1999gb001221>
Chen, L., Fang, K., Wei, B., Qin, S., Feng, X., Hu, T., Ji, C., & Yang, Y. (2021). Soil carbon persistence governed by plant input and mineral protection at regional and global scales. *Ecology Letters*, *24*(5), 1018–1028. <https://doi.org/10.1111/ele.13723>
Chen, Q., Sun, Y., Shen, C., Peng, S., Yi, W., Li, Z., & Jiang, M. (2002). Organic matter turnover rates and CO2 flux from organic matter decomposition of mountain soil profiles in the subtropical area, south china. *CATENA*, *49*(3), 217–229. <https://doi.org/10.1016/s0341-8162(02)00044-9>
Cherkinsky, A. E. (1996). 14C dating and soil organic matter dynamics in arctic and subarctic ecosystems. *Radiocarbon*, *38*(2), 241–245. <https://doi.org/10.1017/s0033822200017616>
Chiti, Tommaso, Certini, G., Forte, C., Papale, D., & Valentini, R. (2015). Radiocarbon-based assessment of heterotrophic soil respiration in two mediterranean forests. *Ecosystems*, *19*(1), 62–72. <https://doi.org/10.1007/s10021-015-9915-4>
Chiti, Tommaso, Certini, G., Grieco, E., & Valentini, R. (2010). The role of soil in storing carbon in tropical rainforests: The case of ankasa park, ghana. *Plant and Soil*, *331*(1-2), 453–461. <https://doi.org/10.1007/s11104-009-0265-x>
Chiti, T., Dı́az-Pinés, E., Butterbach-Bahl, K., Marzaioli, F., & Valentini, R. (2017). Soil organic carbon changes following degradation and conversion to cypress and tea plantations in a tropical mountain forest in kenya. *Plant and Soil*, *422*(1-2), 527–539. <https://doi.org/10.1007/s11104-017-3489-1>
Chiti, T., Neubert, R. E. M., Janssens, I. A., Certini, G., Yuste, J. C., & Sirignano, C. (2009). Radiocarbon dating reveals different past managements of adjacent forest soils in the campine region, belgium. *Geoderma*, *149*(1-2), 137–142. <https://doi.org/10.1016/j.geoderma.2008.11.030>
Chiti, T., Rey, A., Jeffery, K., Lauteri, M., Mihindou, V., Malhi, Y., Marzaioli, F., White, L. J. T., & Valentini, R. (2018). Contribution and stability of forest-derived soil organic carbon during woody encroachment in a tropical savanna. A case study in gabon. *Biology and Fertility of Soils*, *54*(8), 897–907. <https://doi.org/10.1007/s00374-018-1313-6>
Chorover, J., Amistadi, M. K., & Chadwick, O. A. (2004). Surface charge evolution of mineral-organic complexes during pedogenesis in hawaiian basalt. *Geochimica Et Cosmochimica Acta*, *68*(23), 4859–4876. <https://doi.org/10.1016/j.gca.2004.06.005>
Cobb, A. R., Hoyt, A. M., Gandois, L., Eri, J., Dommain, R., Salim, K. A., Kai, F. M., Su’ut, N. S. H., & Harvey, C. F. (2017). How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. *Proceedings of the National Academy of Sciences*, *114*(26). <https://doi.org/10.1073/pnas.1701090114>
Cole, L. E. S., Bhagwat, S. A., & Willis, K. J. (2015). Long-term disturbance dynamics and resilience of tropical peat swamp forests. *Journal of Ecology*, *103*(1), 16–30. <https://doi.org/10.1111/1365-2745.12329>
Conen, F., Zimmermann, M., Leifeld, J., Seth, B., & Alewell, C. (2008). Relative stability of soil carbon revealed by shifts in d15N and C:N ratio. *Biogeosciences*, *5*(1), 123–128. <https://doi.org/10.5194/bg-5-123-2008>
Cook, S., Whelan, M. J., Evans, C. D., Gauci, V., Peacock, M., Garnett, M. H., Kho, L. K., Teh, Y. A., & Page, S. E. (2018). Fluvial organic carbon fluxes from oil palm plantations on tropical peatland. *Biogeosciences*, *15*(24), 7435–7450. <https://doi.org/10.5194/bg-15-7435-2018>
Cooper, M. D. A., Estop-Aragonés, C., Fisher, J. P., Thierry, A., Garnett, M. H., Charman, D. J., Murton, J. B., Phoenix, G. K., Treharne, R., Kokelj, S. V., Wolfe, S. A., Lewkowicz, A. G., Williams, M., & Hartley, I. P. (2017). Limited contribution of permafrost carbon to methane release from thawing peatlands. *Nature Climate Change*, *7*(7), 507–511. <https://doi.org/10.1038/nclimate3328>
Crews, T. E., Kitayama, K., Fownes, J. H., Riley, R. H., Herbert, D. A., Mueller-Dombois, D., & Vitousek, P. M. (1995). Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in hawaii. *Ecology*, *76*(5), 1407–1424. <https://doi.org/10.2307/1938144>
Crow, S. E., Reeves, M., Schubert, O. S., & Sierra, C. A. (2014). Optimization of method to quantify soil organic matter dynamics and carbon sequestration potential in volcanic ash soils. *Biogeochemistry*, *123*(1-2), 27–47. <https://doi.org/10.1007/s10533-014-0051-6>
Cusack, D. F., Chadwick, O. A., Ladefoged, T., & Vitousek, P. M. (2012). Long-term effects of agriculture on soil carbon pools and carbon chemistry along a hawaiian environmental gradient. *Biogeochemistry*, *112*(1-3), 229–243. <https://doi.org/10.1007/s10533-012-9718-z>
CUSACK, D. F., TORN, M. S., McDOWELL, W. H., & SILVER, W. L. (2010). The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. *Global Change Biology*. <https://doi.org/10.1111/j.1365-2486.2009.02131.x>
Czimczik, C. I., Schmidt, M. W. I., & Schulze, E.-D. (2005). Effects of increasing fire frequency on black carbon and organic matter in podzols of siberian scots pine forests. *European Journal of Soil Science*, *56*(3), 417–428. <https://doi.org/10.1111/j.1365-2389.2004.00665.x>
Czimczik, Claudia I., & Trumbore, S. E. (2007). Short-term controls on the age of microbial carbon sources in boreal forest soils. *Journal of Geophysical Research: Biogeosciences*, *112*(G3), n/a–n/a. <https://doi.org/10.1029/2006jg000389>
Czimczik, Claudia I., & Welker, J. M. (2010). Radiocarbon content of CO2 respired from high arctic tundra in northwest Greenland. *Arctic, Antarctic, and Alpine Research*, *42*(3), 342–350. <https://doi.org/10.1657/1938-4246-42.3.342>
Dam, D. van, Breemen, N. van, & Veldkamp, E. (1997). *Biogeochemistry*, *39*(3), 343–375. <https://doi.org/10.1023/a:1005880031579>
Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T. A., Page, S. E., Bocko, Y. E., & Ifo, S. A. (2017). Age, extent and carbon storage of the central congo basin peatland complex. *Nature*, *542*(7639), 86–90. <https://doi.org/10.1038/nature21048>
Desjardins, T., Andreux, F., Volkoff, B., & Cerri, C. C. (1994). Organic carbon and 13C contents in soils and soil size-fractions, and their changes due to deforestation and pasture installation in eastern amazonia. *Geoderma*, *61*(1-2), 103–118. <https://doi.org/10.1016/0016-7061(94)90013-2>
Dintwe, K., Okin, G. S., O’Donell, F., Bhattachan, A., Tatlhego, M., Mladenov, T., Handorean, A., Caylor, K. K., & D’Odorico, P. (2022). *Radiocarbon and soil properties along the kalahari moisture gradient in botswana*. Zenodo. <https://doi.org/10.5281/ZENODO.6984680>
Doetterl, S., Six, J., Wesemael, B. V., & Oost, K. V. (2012). Carbon cycling in eroding landscapes: Geomorphic controls on soil organic c pool composition and c stabilization. *Global Change Biology*, *18*(7), 2218–2232. <https://doi.org/10.1111/j.1365-2486.2012.02680.x>
Doetterl, S., Stevens, A., Six, J., Merckx, R., Oost, K. V., Pinto, M. C., Casanova-Katny, A., Muñoz, C., Boudin, M., Venegas, E. Z., & Boeckx, P. (2015). Soil carbon storage controlled by interactions between geochemistry and climate. *Nature Geoscience*, *8*(10), 780–783. <https://doi.org/10.1038/ngeo2516>
Dommain, R., Andama, M., McDonough, M. M., Prado, N. A., Goldhammer, T., Potts, R., Maldonado, J. E., Nkurunungi, J. B., & Campana, M. G. (2020). The challenges of reconstructing tropical biodiversity with sedimentary ancient DNA: A 2200-year-long metagenomic record from bwindi impenetrable forest, uganda. *Frontiers in Ecology and Evolution*, *8*. <https://doi.org/10.3389/fevo.2020.00218>
Dommain, R., Cobb, A. R., Joosten, H., Glaser, P. H., Chua, A. F. L., Gandois, L., Kai, F.-M., Noren, A., Salim, K. A., Suut, N. S. H., & Harvey, C. F. (2015). Forest dynamics and tip-up pools drive pulses of high carbon accumulation rates in a tropical peat dome in borneo (southeast asia). *Journal of Geophysical Research: Biogeosciences*, *120*(4), 617–640. <https://doi.org/10.1002/2014jg002796>
Dörr, H., & Münnich, K. O. (1980). Carbon-14 and carbon-13 in soil CO2. *Radiocarbon*, *22*(3), 909–918. <https://doi.org/10.1017/s0033822200010316>
Dörr, H., & Münnich, K. O. (1986). Annual variations of the 14C content of soil CO2. *Radiocarbon*, *28*(2A), 338–345. <https://doi.org/10.1017/s0033822200007438>
Dörr, H., & Münnich, K. O. (1989). Downward movement of soil organic matter and its influence on trace-element transport (210Pb, 137Cs) in the soil. *Radiocarbon*, *31*(03), 655–663. <https://doi.org/10.1017/s003382220001225x>
Drake, T. W., Oost, K. V., Barthel, M., Bauters, M., Hoyt, A. M., Podgorski, D. C., Six, J., Boeckx, P., Trumbore, S. E., Ntaboba, L. C., & Spencer, R. G. M. (2019). Mobilization of aged and biolabile soil carbon by tropical deforestation. *Nature Geoscience*, *12*(7), 541–546. <https://doi.org/10.1038/s41561-019-0384-9>
Dredge, L. A., & Mott, R. J. (2005). Holocene pollen records and peatland development, northeastern manitoba. *Géographie Physique Et Quaternaire*, *57*(1), 7–19. <https://doi.org/10.7202/010328ar>
Dümig, A., Schad, P., Rumpel, C., Dignac, M.-F., & Kögel-Knabner, I. (2008). Araucaria forest expansion on grassland in the southern brazilian highlands as revealed by 14C and d13C studies. *Geoderma*, *145*(1-2), 143–157. <https://doi.org/10.1016/j.geoderma.2007.06.005>
DUTTA, K., SCHUUR, E. A. G., NEFF, J. C., & ZIMOV, S. A. (2006). Potential carbon release from permafrost soils of northeastern siberia. *Global Change Biology*, *12*(12), 2336–2351. <https://doi.org/10.1111/j.1365-2486.2006.01259.x>
Elder, C. D., Xu, X., Walker, J., Schnell, J. L., Hinkel, K. M., Townsend-Small, A., Arp, C. D., Pohlman, J. W., Gaglioti, B. V., & Czimczik, C. I. (2018). Greenhouse gas emissions from diverse arctic alaskan lakes are dominated by young carbon. *Nature Climate Change*, *8*(2), 166–171. <https://doi.org/10.1038/s41558-017-0066-9>
ELLIS, C. J., & ROCHEFORT, L. (2006). Long-term sensitivity of a high arctic wetland to holocene climate change. *Journal of Ecology*, *94*(2), 441–454. <https://doi.org/10.1111/j.1365-2745.2005.01085.x>
Ellis, C. J., & Rochefort, L. (2004). CENTURY-SCALE DEVELOPMENT OF POLYGON-PATTERNED TUNDRA WETLAND, BYLOT ISLAND (73 n, 80 w). *Ecology*, *85*(4), 963–978. <https://doi.org/10.1890/02-0614>
Elzein, A., & Balesdent, J. (1995). Mechanistic simulation of vertical distribution of carbon concentrations and residence times in soils. *Soil Science Society of America Journal*, *59*(5), 1328–1335. <https://doi.org/10.2136/sssaj1995.03615995005900050019x>
Estop-Aragonés, C., Cooper, M. D. A., Fisher, J. P., Thierry, A., Garnett, M. H., Charman, D. J., Murton, J. B., Phoenix, G. K., Treharne, R., Sanderson, N. K., Burn, C. R., Kokelj, S. V., Wolfe, S. A., Lewkowicz, A. G., Williams, M., & Hartley, I. P. (2018). Limited release of previously-frozen c and increased new peat formation after thaw in permafrost peatlands. *Soil Biology and Biochemistry*, *118*, 115–129. <https://doi.org/10.1016/j.soilbio.2017.12.010>
Eusterhues, K., Rumpel, C., Kleber, M., & Kögel-Knabner, I. (2003). Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. *Organic Geochemistry*, *34*(12), 1591–1600. <https://doi.org/10.1016/j.orggeochem.2003.08.007>
Ewing, S. A., Sanderman, J., Baisden, W. T., Wang, Y., & Amundson, R. (2006). Role of large-scale soil structure in organic carbon turnover: Evidence from california grassland soils. *Journal of Geophysical Research*, *111*(G3). <https://doi.org/10.1029/2006jg000174>
Favilli, F., Egli, M., Cherubini, P., Sartori, G., Haeberli, W., & Delbos, E. (2008). Comparison of different methods of obtaining a resilient organic matter fraction in alpine soils. *Geoderma*, *145*(3-4), 355–369. <https://doi.org/10.1016/j.geoderma.2008.04.002>
Fekete, I., Berki, I., Lajtha, K., Trumbore, S., Francioso, O., Gioacchini, P., Montecchio, D., Várbı́ró, G., Béni, Áron, Makádi, M., Demeter, I., Madarász, B., Juhos, K., & Kotroczó, Z. (2020). How will a drier climate change carbon sequestration in soils of the deciduous forests of central europe? *Biogeochemistry*, *152*(1), 13–32. <https://doi.org/10.1007/s10533-020-00728-w>
Fernandez, I. J., Rustad, L. E., & Lawrence, G. B. (1993). Estimating total soil mass, nutrient content, and trace metals in soils under a low elevation spruce-fir forest. *Canadian Journal of Soil Science*, *73*(3), 317–328. <https://doi.org/10.4141/cjss93-034>
Feudis, M. D., Cardelli, V., Massaccesi, L., Trumbore, S. E., Antisari, L. V., Cocco, S., Corti, G., & Agnelli, A. (2019). Small altitudinal change and rhizosphere affect the SOM light fractions but not the heavy fraction in european beech forest soil. *CATENA*, *181*, 104091. <https://doi.org/10.1016/j.catena.2019.104091>
Fierer, N., Chadwick, O. A., & Trumbore, S. E. (2005). Production of CO2 in soil profiles of a california annual grassland. *Ecosystems*, *8*(4), 412–429. <https://doi.org/10.1007/s10021-003-0151-y>
Fillion, M.-È., Bhiry, N., & Touazi, M. (2014). Differential development of two palsa fields in a peatland located near whapmagoostui-kuujjuarapik, northern québec, canada. *Arctic, Antarctic, and Alpine Research*, *46*(1), 40–54. <https://doi.org/10.1657/1938-4246-46.1.40>
Finstad, K., Straaten, O., Veldkamp, E., & McFarlane, K. (2020). Soil carbon dynamics following land use changes and conversion to oil palm plantations in tropical lowlands inferred from radiocarbon. *Global Biogeochemical Cycles*, *34*(9). <https://doi.org/10.1029/2019gb006461>
Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., & Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. *Nature*, *450*(7167), 277–280. <https://doi.org/10.1038/nature06275>
Freitas, H. A. de, Pessenda, L. C. R., Aravena, R., Gouveia, S. E. M., Souza Ribeiro, A. de, & Boulet, R. (2001). Late quaternary vegetation dynamics in the southern amazon basin inferred from carbon isotopes in soil organic matter. *Quaternary Research*, *55*(1), 39–46. <https://doi.org/10.1006/qres.2000.2192>
Gandois, L., Teisserenc, R., Cobb, A. R., Chieng, H. I., Lim, L. B. L., Kamariah, A. S., Hoyt, A., & Harvey, C. F. (2014). Origin, composition, and transformation of dissolved organic matter in tropical peatlands. *Geochimica Et Cosmochimica Acta*, *137*, 35–47. <https://doi.org/10.1016/j.gca.2014.03.012>
Garneau, M. (2007). Analyses macrofossiles d’un dépot de tourbe dans la région de hot weather creek, péninsule de fosheim, ı̂le d’ellesmere, territoires du nord-ouest. *Géographie Physique Et Quaternaire*, *46*(3), 285–294. <https://doi.org/10.7202/032915ar>
Garneau, M., Bellen, S. van, Magnan, G., Beaulieu-Audy, V., Lamarre, A., & Asnong, H. (2014). Holocene carbon dynamics of boreal and subarctic peatlands from québec, canada. *The Holocene*, *24*(9), 1043–1053. <https://doi.org/10.1177/0959683614538076>
Gaudinski, J. B., Trumbore, S. E., Davidson, E. A., & Zheng, S. (2000). *Biogeochemistry*, *51*(1), 33–69. <https://doi.org/10.1023/a:1006301010014>
Gentsch, N., Wild, B., Mikutta, R., Čapek, P., Diáková, K., Schrumpf, M., Turner, S., Minnich, C., Schaarschmidt, F., Shibistova, O., Schnecker, J., Urich, T., Gittel, A., Šantrůčková, H., Bárta, J., Lashchinskiy, N., Fuß, R., Richter, A., & Guggenberger, G. (2018). Temperature response of permafrost soil carbon is attenuated by mineral protection. *Global Change Biology*, *24*(8), 3401–3415. <https://doi.org/10.1111/gcb.14316>
Giardina, C. P., Litton, C. M., Crow, S. E., & Asner, G. P. (2014). Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux. *Nature Climate Change*, *4*(9), 822–827. <https://doi.org/10.1038/nclimate2322>
Gillson, L. (2004). Testing non-equilibrium theories in savannas: 1400 years of vegetation change in tsavo national park, kenya. *Ecological Complexity*, *1*(4), 281–298. <https://doi.org/10.1016/j.ecocom.2004.06.001>
GOH, K. M., RAFTER, T. A., STOUT, J. D., & WALKER, T. W. (1976). THE ACCUMULATION OF SOIL ORGANIC MATTER AND ITS CARBON ISOTOPE CONTENT IN a CHRONOSEQUENCE OF SOILS DEVELOPED ON AEOLIAN SAND IN NEW ZEALAND. *Journal of Soil Science*, *27*(1), 89–100. <https://doi.org/10.1111/j.1365-2389.1976.tb01979.x>
GOH, K. M., STOUT, J. D., & RAFTER, T. A. (1977). RADIOCARBON ENRICHMENT OF SOIL ORGANIC MATTER FRACTIONS IN NEW ZEALAND SOILS. *Soil Science*, *123*(6), 385–391. <https://doi.org/10.1097/00010694-197706000-00007>
González-Domı́nguez, B., Niklaus, P. A., Studer, M. S., Hagedorn, F., Wacker, L., Haghipour, N., Zimmermann, S., Walthert, L., McIntyre, C., & Abiven, S. (2019). Temperature and moisture are minor drivers of regional-scale soil organic carbon dynamics. *Scientific Reports*, *9*(1). <https://doi.org/10.1038/s41598-019-42629-5>
Grant, K. E., Galy, V. V., Haghipour, N., Eglinton, T. I., & Derry, L. A. (2022). Persistence of old soil carbon under changing climate: The role of mineral-organic matter interactions. *Chemical Geology*, *587*, 120629. <https://doi.org/10.1016/j.chemgeo.2021.120629>
GUILLET, B., ACHOUNDONG, G., HAPPI, J. Y., BEYALA, V. K. K., BONVALLOT, J., RIERA, B., MARIOTTI, A., & SCHWARTZ, D. (2001). Agreement between floristic and soil organic carbon isotope (13C/12C, 14C) indicators of forest invasion of savannas during the last century in cameroon. *Journal of Tropical Ecology*, *17*(6), 809–832. <https://doi.org/10.1017/s0266467401001614>
Guillet, B., Faivre, P., Mariotti, A., & Khobzi, J. (1988). The 14C dates and 13C/12C ratios of soil organic matter as a means of studying the past vegetation in intertropical regions: Examples from colombia (south america). *Palaeogeography, Palaeoclimatology, Palaeoecology*, *65*(1-2), 51–58. <https://doi.org/10.1016/0031-0182(88)90111-3>
Guo, L., Lehner, J. K., White, D. M., & Garland, D. S. (2003). Heterogeneity of natural organic matter from the chena river, alaska. *Water Research*, *37*(5), 1015–1022. <https://doi.org/10.1016/s0043-1354(02)00443-8>
Guo, L., & Macdonald, R. W. (2006). Source and transport of terrigenous organic matter in the upper yukon river: Evidence from isotope (d13C, ∆14C, and d15N) composition of dissolved, colloidal, and particulate phases. *Global Biogeochemical Cycles*, *20*(2), n/a–n/a. <https://doi.org/10.1029/2005gb002593>
Guo, L., Ping, C.-L., & Macdonald, R. W. (2007). Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate. *Geophysical Research Letters*, *34*(13), n/a–n/a. <https://doi.org/10.1029/2007gl030689>
Hall, S. J., McNicol, G., Natake, T., & Silver, W. L. (2015). *Large fluxes and rapid turnover of mineral-associated carbon across topographic gradients in a humid tropical forest: Insights from paired 14C analysis*. <https://doi.org/10.5194/bgd-12-891-2015>
Harden, J. W., Fries, T. L., & Pavich, M. J. (2002). *Biogeochemistry*, *60*(3), 317–336. <https://doi.org/10.1023/a:1020308729553>
Hardie, S. M. L., Garnett, M. H., Fallick, A. E., Ostle, N. J., & Rowland, A. P. (2009). Bomb-14C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon. *Geoderma*, *153*(3-4), 393–401. <https://doi.org/10.1016/j.geoderma.2009.09.002>
Hardie, S. M. L., Garnett, M. H., Fallick, A. E., Rowland, A. P., Ostle, N. J., & Flowers, T. H. (2011). Abiotic drivers and their interactive effect on the flux and carbon isotope (14C and d13C) composition of peat-respired CO2. *Soil Biology and Biochemistry*, *43*(12), 2432–2440. <https://doi.org/10.1016/j.soilbio.2011.08.010>
Harkness, D. D., Harrison, A. F., & Bacon, P. J. (1986). The temporal distribution of “bomb” 14C in a forest soil. *Radiocarbon*, *28*(2A), 328–337. <https://doi.org/10.1017/s0033822200007426>
Harris, S. A., & Schmidt, I. H. (1994). Permafrost aggradation and peat accumulation since 1200 years b.p. In peat plateaus at tuchitua, yukon territory (canada). *Journal of Paleolimnology*, *12*(1), 3–17. <https://doi.org/10.1007/bf00677986>
Hatton, P.-J., Kleber, M., Zeller, B., Moni, C., Plante, A. F., Townsend, K., Gelhaye, L., Lajtha, K., & Derrien, D. (2012). Transfer of litter-derived n to soil mineralorganic associations: Evidence from decadal 15N tracer experiments. *Organic Geochemistry*, *42*(12), 1489–1501. <https://doi.org/10.1016/j.orggeochem.2011.05.002>
Heckman, K. A. (2010). *Pedogenesis & carbon dynamics across a lithosequence under ponderosa pine*. <https://doi.org/10.5281/ZENODO.1486081>
Heckman, K., Lawrence, C. R., & Harden, J. W. (2018). A sequential selective dissolution method to quantify storage and stability of organic carbon associated with al and fe hydroxide phases. *Geoderma*, *312*, 24–35. <https://doi.org/10.1016/j.geoderma.2017.09.043>
Hemingway, Jordon D., Galy, V. V., Gagnon, A. R., Grant, K. E., Rosengard, S. Z., Soulet, G., Zigah, P. K., & McNichol, A. P. (2017). Assessing the blank carbon contribution, isotope mass balance, and kinetic isotope fractionation of the ramped pyrolysis/oxidation instrument at NOSAMS. *Radiocarbon*, *59*(1), 179–193. <https://doi.org/10.1017/rdc.2017.3>
Hemingway, Jordon D., Rothman, D. H., Grant, K. E., Rosengard, S. Z., Eglinton, T. I., Derry, L. A., & Galy, V. V. (2019). Mineral protection regulates long-term global preservation of natural organic carbon. *Nature*, *570*(7760), 228–231. <https://doi.org/10.1038/s41586-019-1280-6>
Hilton, R. G., Galy, V., Gaillardet, J., Dellinger, M., Bryant, C., ORegan, M., Gröcke, D. R., Coxall, H., Bouchez, J., & Calmels, D. (2015). Erosion of organic carbon in the arctic as a geological carbon dioxide sink. *Nature*, *524*(7563), 84–87. <https://doi.org/10.1038/nature14653>
Holden, S. R., Czimczik, C. I., Xu, X., & Treseder, K. K. (2019). *Soil radiocarbon data from a fire chronosequence near delta junction, alaska*. Zenodo. <https://doi.org/10.5281/ZENODO.3370057>
Holmquist, J. R., MacDonald, G. M., & Gallego-Sala, A. (2014). Peatland initiation, carbon accumulation, and 2 ka depth in the james bay lowland and adjacent regions. *Arctic, Antarctic, and Alpine Research*, *46*(1), 19–39. <https://doi.org/10.1657/1938-4246-46.1.19>
Hood, E., Fellman, J., Spencer, R. G. M., Hernes, P. J., Edwards, R., D’Amore, D., & Scott, D. (2009). Glaciers as a source of ancient and labile organic matter to the marine environment. *Nature*, *462*(7276), 1044–1047. <https://doi.org/10.1038/nature08580>
Hope, G., Chokkalingam, U., & Anwar, S. (2005). The stratigraphy and fire history of the kutai peatlands, kalimantan, indonesia. *Quaternary Research*, *64*(3), 407–417. <https://doi.org/10.1016/j.yqres.2005.08.009>
Horwath, J. L., Sletten, R. S., Hagedorn, B., & Hallet, B. (2008). Spatial and temporal distribution of soil organic carbon in nonsorted striped patterned ground of the high arctic. *Journal of Geophysical Research*, *113*(G3). <https://doi.org/10.1029/2007jg000511>
Hribljan, J. A., Suárez, E., Heckman, K. A., Lilleskov, E. A., & Chimner, R. A. (2016). Peatland carbon stocks and accumulation rates in the ecuadorian páramo. *Wetlands Ecology and Management*, *24*(2), 113–127. <https://doi.org/10.1007/s11273-016-9482-2>
Hsieh, Y.-P. (1996). Soil organic carbon pools of two tropical soils inferred by carbon signatures. *Soil Science Society of America Journal*, *60*(4), 1117–1121. <https://doi.org/10.2136/sssaj1996.03615995006000040022x>
Huang, Y., Bol, R., Harkness, D. D., Ineson, P., & Eglinton, G. (1996). Post-glacial variations in distributions, 13C and 14C contents of aliphatic hydrocarbons and bulk organic matter in three types of british acid upland soils. *Organic Geochemistry*, *24*(3), 273–287. <https://doi.org/10.1016/0146-6380(96)00039-3>
Huang, Y., Li, B., Bryant, C., Bol, R., & Eglinton, G. (1999). Radiocarbon dating of aliphatic hydrocarbons a new approach for dating passive-fraction carbon in soil horizons. *Soil Science Society of America Journal*, *63*(5), 1181–1187. <https://doi.org/10.2136/sssaj1999.6351181x>
Hugelius, G., Routh, J., Kuhry, P., & Crill, P. (2012). Mapping the degree of decomposition and thaw remobilization potential of soil organic matter in discontinuous permafrost terrain. *Journal of Geophysical Research: Biogeosciences*, *117*(G2), n/a–n/a. <https://doi.org/10.1029/2011jg001873>
Hunt, S., Yu, Z., & Jones, M. (2013). Lateglacial and holocene climate, disturbance and permafrost peatland dynamics on the seward peninsula, western alaska. *Quaternary Science Reviews*, *63*, 42–58. <https://doi.org/10.1016/j.quascirev.2012.11.019>
International conference on soils and the greenhouse effect. (1990). *COSPAR Information Bulletin*, *1990*(118), 6–7. <https://doi.org/10.1016/0045-8732(90)90051-o>
James, J. N., Gross, C. D., Dwivedi, P., Myers, T., Santos, F., Bernardi, R., Faria, M. F. de, Guerrini, I. A., Harrison, R., & Butman, D. (2019). Land use change alters the radiocarbon age and composition of soil and water-soluble organic matter in the brazilian cerrado. *Geoderma*, *345*, 38–50. <https://doi.org/10.1016/j.geoderma.2019.03.019>
JANKOVSKÁ, V., ANDREEV, A. A., & PANOVA, N. K. (2006). Holocene environmental history on the eastern slope of the polar ural mountains, russia. *Boreas*, *35*(4), 650–661. <https://doi.org/10.1111/j.1502-3885.2006.tb01171.x>
Jasinski, J., Warner, B. G., Andreev, A. A., Aravena, R., Gilbert, S. E., Zeeb, B. A., Smol, J. P., & Velichko, A. A. (1998). Holocene environmental history of a peatland in the lena river valley, siberia. *Canadian Journal of Earth Sciences*, *35*(6), 637–648. <https://doi.org/10.1139/e98-015>
Johnston, C. E., Ewing, S. A., Harden, J. W., Varner, R. K., Wickland, K. P., Koch, J. C., Fuller, C. C., Manies, K., & Jorgenson, M. T. (2014). Effect of permafrost thaw on CO2 and CH4 exchange in a western alaska peatland chronosequence. *Environmental Research Letters*, *9*(8), 085004. <https://doi.org/10.1088/1748-9326/9/8/085004>
Jones, M. C., Booth, R. K., Yu, Z., & Ferry, P. (2012). A 2200-year record of permafrost dynamics and carbon cycling in a collapse-scar bog, interior alaska. *Ecosystems*, *16*(1), 1–19. <https://doi.org/10.1007/s10021-012-9592-5>
Jones, M. C., Peteet, D. M., Kurdyla, D., & Guilderson, T. (2009). Climate and vegetation history from a 14,000-year peatland record, kenai peninsula, alaska. *Quaternary Research*, *72*(2), 207–217. <https://doi.org/10.1016/j.yqres.2009.04.002>
Jones, M. C., Wooller, M., & Peteet, D. M. (2014). A deglacial and holocene record of climate variability in south-central alaska from stable oxygen isotopes and plant macrofossils in peat. *Quaternary Science Reviews*, *87*, 1–11. <https://doi.org/10.1016/j.quascirev.2013.12.025>
Kaiser, C., Meyer, H., Biasi, C., Rusalimova, O., Barsukov, P., & Richter, A. (2007). Conservation of soil organic matter through cryoturbation in arctic soils in siberia. *Journal of Geophysical Research*, *112*(G2). <https://doi.org/10.1029/2006jg000258>
Karhu, K., Fritze, H., Hämäläinen, K., Vanhala, P., Jungner, H., Oinonen, M., Sonninen, E., Tuomi, M., Spetz, P., Kitunen, V., & Liski, J. (2010). Temperature sensitivity of soil carbon fractions in boreal forest soil. *Ecology*, *91*(2), 370–376. <https://doi.org/10.1890/09-0478.1>
Katsuno, K., Miyairi, Y., Tamura, K., Matsuzaki, H., & Fukuda, K. (2010). A study of the carbon dynamics of japanese grassland and forest using 14C and 13C. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, *268*(7-8), 1106–1109. <https://doi.org/10.1016/j.nimb.2009.10.110>
Kelly, T. J., Lawson, I. T., Roucoux, K. H., Baker, T. R., & Coronado, E. N. H. (2020). Patterns and drivers of development in a west amazonian peatland during the late holocene. *Quaternary Science Reviews*, *230*, 106168. <https://doi.org/10.1016/j.quascirev.2020.106168>
Kelly, T. J., Lawson, I. T., Roucoux, K. H., Baker, T. R., Honorio-Coronado, E. N., Jones, T. D., & Panduro, S. R. (2018). Continuous human presence without extensive reductions in forest cover over the past 2500 years in an aseasonal amazonian rainforest. *Journal of Quaternary Science*, *33*(4), 369–379. <https://doi.org/10.1002/jqs.3019>
Kelly, T. J., Lawson, I. T., Roucoux, K. H., Baker, T. R., Jones, T. D., & Sanderson, N. K. (2017). The vegetation history of an amazonian domed peatland. *Palaeogeography, Palaeoclimatology, Palaeoecology*, *468*, 129–141. <https://doi.org/10.1016/j.palaeo.2016.11.039>
Kettles, I. M., Garneau, M., & Jetté, H. (2000). *Macrofossil, pollen, and geochemical records of peatlands in the knosheo lake and detour lake areas, northern ontario*. Natural Resources Canada/CMSS/Information Management. <https://doi.org/10.4095/211326>
Kettles, I. M., Robinson, S. D., Bastien, D. -F, Garneau, M., & Hall, G. E. M. (2003). *Physical, geochemical, macrofossil, and ground penetrating radar information on fourteen permafrost-affected peatlands in the mackenzie valley, northwest territories*. Natural Resources Canada/CMSS/Information Management. <https://doi.org/10.4095/214221>
Khomo, L., Trumbore, S., Bern, C. R., & Chadwick, O. A. (2017). Timescales of carbon turnover in soils with mixed crystalline mineralogies. *SOIL*, *3*(1), 17–30. <https://doi.org/10.5194/soil-3-17-2017>
Klapstein, S. J., Turetsky, M. R., McGuire, A. D., Harden, J. W., Czimczik, C. I., Xu, X., Chanton, J. P., & Waddington, J. M. (2014). Controls on methane released through ebullition in peatlands affected by permafrost degradation. *Journal of Geophysical Research: Biogeosciences*, *119*(3), 418–431. <https://doi.org/10.1002/2013jg002441>
Kleber, M., Mikutta, R., Torn, M. S., & Jahn, R. (2005). Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. *European Journal of Soil Science*, *0*(0), 050912034650054. <https://doi.org/10.1111/j.1365-2389.2005.00706.x>
Klein, E. S., Yu, Z., & Booth, R. K. (2013). Recent increase in peatland carbon accumulation in a thermokarst lake basin in southwestern alaska. *Palaeogeography, Palaeoclimatology, Palaeoecology*, *392*, 186–195. <https://doi.org/10.1016/j.palaeo.2013.09.009>
Klerk, P. de, Donner, N., Karpov, N. S., Minke, M., & Joosten, H. (2011). Short-term dynamics of a low-centred ice-wedge polygon near chokurdakh (NE yakutia, NE siberia) and climate change during the last ca 1250 years. *Quaternary Science Reviews*, *30*(21-22), 3013–3031. <https://doi.org/10.1016/j.quascirev.2011.06.016>
KOARASHI, J., ATARASHI-ANDOH, M., ISHIZUKA, S., MIURA, S., SAITO, T., & HIRAI, K. (2009). Quantitative aspects of heterogeneity in soil organic matter dynamics in a cool-temperate japanese beech forest: A radiocarbon-based approach. *Global Change Biology*, *15*(3), 631–642. <https://doi.org/10.1111/j.1365-2486.2008.01745.x>
Koarashi, J., Hockaday, W. C., Masiello, C. A., & Trumbore, S. E. (2012). Dynamics of decadally cycling carbon in subsurface soils. *Journal of Geophysical Research: Biogeosciences*, *117*(G3), n/a–n/a. <https://doi.org/10.1029/2012jg002034>
Koarashi, J., Iida, T., & Asano, T. (2005). Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest. *Journal of Environmental Radioactivity*, *79*(2), 137–156. <https://doi.org/10.1016/j.jenvrad.2004.06.002>
Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., Eusterhues, K., & Leinweber, P. (2008). Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. *Journal of Plant Nutrition and Soil Science*, *171*(1), 61–82. <https://doi.org/10.1002/jpln.200700048>
Kokfelt, U., Reuss, N., Struyf, E., Sonesson, M., Rundgren, M., Skog, G., Rosén, P., & Hammarlund, D. (2010). Wetland development, permafrost history and nutrient cycling inferred from late holocene peat and lake sediment records in subarctic sweden. *Journal of Paleolimnology*, *44*(1), 327–342. <https://doi.org/10.1007/s10933-010-9406-8>
Kondo, M., Uchida, M., & Shibata, Y. (2010). Radiocarbon-based residence time estimates of soil organic carbon in a temperate forest: Case study for the density fractionation for japanese volcanic ash soil. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, *268*(7-8), 1073–1076. <https://doi.org/10.1016/j.nimb.2009.10.101>
Kovda, I., Lynn, W., Williams, D., & Chichagova, O. (2001). Radiocarbon age of vertisols and its interpretation using data on gilgai complex in the north caucasus. *Radiocarbon*, *43*(2B), 603–610. <https://doi.org/10.1017/s0033822200041254>
Kramer, M. G., & Chadwick, O. A. (2016). Controls on carbon storage and weathering in volcanic soils across a high-elevation climate gradient on mauna kea, hawaii. *Ecology*, *97*(9), 2384–2395. <https://doi.org/10.1002/ecy.1467>
Kramer, M. G., Sanderman, J., Chadwick, O. A., Chorover, J., & Vitousek, P. M. (2012). Long-term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. *Global Change Biology*, *18*(8), 2594–2605. <https://doi.org/10.1111/j.1365-2486.2012.02681.x>
KREMENETSKI, C., VASCHALOVA, T., GORIACHKIN, S., CHERKINSKY, A., & SULERZHITSKY, L. (2008). Holocene pollen stratigraphy and bog development in the western part of the kola peninsula, russia. *Boreas*, *26*(2), 91–102. <https://doi.org/10.1111/j.1502-3885.1997.tb00656.x>
Krull, Evelyn S., Bestland, E. A., Skjemstad, J. O., & Parr, J. F. (2006). Geochemistry (d13C, d15N, 13C NMR) and residence times (14C and OSL) of soil organic matter from red-brown earths of south australia: Implications for soil genesis. *Geoderma*, *132*(3-4), 344–360. <https://doi.org/10.1016/j.geoderma.2005.06.001>
Krull, Evelyn S., & Skjemstad, J. O. (2003). d13C and d15N profiles in 14C-dated oxisol and vertisols as a function of soil chemistry and mineralogy. *Geoderma*, *112*(1-2), 1–29. <https://doi.org/10.1016/s0016-7061(02)00291-4>
Krull, Evelyn S., Skjemstad, J. O., Burrows, W. H., Bray, S. G., Wynn, J. G., Bol, R., Spouncer, L., & Harms, B. (2005). Recent vegetation changes in central queensland, australia: Evidence from d13C and 14C analyses of soil organic matter. *Geoderma*, *126*(3-4), 241–259. <https://doi.org/10.1016/j.geoderma.2004.09.012>
Kuhnen, Á., Matschullat, J., Sierra, C. A., & Lima, R. M. B. de. (2019). *C-isotopic signatures and soil properties of amazon basin oxisols*. Zenodo. <https://doi.org/10.5281/ZENODO.2645510>
Kuhry, P. (1997). The palaeoecology of a treed bog in western boreal canada: A study based on microfossils, macrofossils and physico-chemical properties. *Review of Palaeobotany and Palynology*, *96*(1-2), 183–224. <https://doi.org/10.1016/s0034-6667(96)00018-8>
KUHRY, P. (2008). Palsa and peat plateau development in the hudson bay lowlands, canada: Timing, pathways and causes. *Boreas*, *37*(2), 316–327. <https://doi.org/10.1111/j.1502-3885.2007.00022.x>
Kuhry, Peter, & Vitt, D. H. (1996). Fossil carbon/nitrogen ratios as a measure of peat decomposition. *Ecology*, *77*(1), 271–275. <https://doi.org/10.2307/2265676>
Kultti, S., Oksanen, P., & Väliranta, M. (2004). Holocene tree line, permafrost, and climate dynamics in the nenets region, east european arctic. *Canadian Journal of Earth Sciences*, *41*(10), 1141–1158. <https://doi.org/10.1139/e04-058>
Kwon, M. J., Natali, S. M., Pries, C. E. H., Schuur, E. A. G., Steinhof, A., Crummer, K. G., Zimov, N., Zimov, S. A., Heimann, M., Kolle, O., & Göckede, M. (2019). Drainage enhances modern soil carbon contribution but reduces old soil carbon contribution to ecosystem respiration in tundra ecosystems. *Global Change Biology*, *25*(4), 1315–1325. <https://doi.org/10.1111/gcb.14578>
Ladyman, S. J., & Harkness, D. D. (1980). Carbon isotope measurement as an index of soil development. *Radiocarbon*, *22*(3), 885–891. <https://doi.org/10.1017/s0033822200010286>
Lähteenoja, O., Reátegui, Y. R., Räsänen, M., Torres, D. D. C., Oinonen, M., & Page, S. (2011). The large amazonian peatland carbon sink in the subsiding pastaza-marañón foreland basin, peru. *Global Change Biology*, *18*(1), 164–178. <https://doi.org/10.1111/j.1365-2486.2011.02504.x>
LÄHTEENOJA, O., RUOKOLAINEN, K., SCHULMAN, L., & OINONEN, M. (2009). Amazonian peatlands: An ignored c sink and potential source. *Global Change Biology*, *15*(9), 2311–2320. <https://doi.org/10.1111/j.1365-2486.2009.01920.x>
Lamarre, A., Garneau, M., & Asnong, H. (2012). Holocene paleohydrological reconstruction and carbon accumulation of a permafrost peatland using testate amoeba and macrofossil analyses, kuujjuarapik, subarctic québec, canada. *Review of Palaeobotany and Palynology*, *186*, 131–141. <https://doi.org/10.1016/j.revpalbo.2012.04.009>
Laskar, A. H., Yadava, M. G., & Ramesh, R. (2012). Radiocarbon and stable carbon isotopes in two soil profiles from northeast india. *Radiocarbon*, *54*(1), 81–89. <https://doi.org/10.2458/azu_js_rc.v54i1.15840>
Lassey, K. R., Tate, K. R., Sparks, R. J., & Claydon, J. J. (1996). Historic measurements of radiocarbon in new zealand soils. *Radiocarbon*, *38*(2), 253–270. <https://doi.org/10.1017/s003382220001763x>
Lavoie, C., & Payette, S. (1995). Analyse macrofossile dune palse subarctique (québec nordique). *Canadian Journal of Botany*, *73*(4), 527–537. <https://doi.org/10.1139/b95-054>
Lavoie, M., Mack, M. C., & Schuur, E. A. G. (2011). Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in alaskan arctic and boreal soils. *Journal of Geophysical Research*, *116*(G3). <https://doi.org/10.1029/2010jg001629>
Lawrence, C. R., Harden, J. W., Xu, X., Schulz, M. S., & Trumbore, S. E. (2015). Long-term controls on soil organic carbon with depth and time: A case study from the cowlitz river chronosequence, WA USA. *Geoderma*, *247-248*, 73–87. <https://doi.org/10.1016/j.geoderma.2015.02.005>
Lawrence, C. R., Schulz, M. S., Masiello, C. A., Chadwick, O. A., & Harden, J. W. (2021). The trajectory of soil development and its relationship to soil carbon dynamics. *Geoderma*, *403*, 115378. <https://doi.org/10.1016/j.geoderma.2021.115378>
Leavitt, S. W., Follett, R. F., Kimble, J. M., & Pruessner, E. G. (2007). Radiocarbon and d13C depth profiles of soil organic carbon in the u.s. Great plains: A possible spatial record of paleoenvironment and paleovegetation. *Quaternary International*, *162-163*, 21–34. <https://doi.org/10.1016/j.quaint.2006.10.033>
Ledru, M.-P. (2001). Late holocene rainforest disturbance in french guiana. *Review of Palaeobotany and Palynology*, *115*(3-4), 161–170. <https://doi.org/10.1016/s0034-6667(01)00068-9>
Lee, H., Schuur, E. A. G., Inglett, K. S., Lavoie, M., & Chanton, J. P. (2011). The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. *Global Change Biology*, *18*(2), 515–527. <https://doi.org/10.1111/j.1365-2486.2011.02519.x>
LEIFELD, J., ZIMMERMANN, M., FUHRER, J., & CONEN, F. (2009). Storage and turnover of carbon in grassland soils along an elevation gradient in the swiss alps. *Global Change Biology*, *15*(3), 668–679. <https://doi.org/10.1111/j.1365-2486.2008.01782.x>
Leith, F. I., Garnett, M. H., Dinsmore, K. J., Billett, M. F., & Heal, K. V. (2014). Source and age of dissolved and gaseous carbon in a peatlandriparianstream continuum: A dual isotope (14C and d13C) analysis. *Biogeochemistry*, *119*(1-3), 415–433. <https://doi.org/10.1007/s10533-014-9977-y>
Li, Y., & Mathews, B. W. (2010). Effect of conversion of sugarcane plantation to forest and pasture on soil carbon in hawaii. *Plant and Soil*, *335*(1-2), 245–253. <https://doi.org/10.1007/s11104-010-0412-4>
Liu, W., Moriizumi, J., Yamazawa, H., & Iida, T. (2006). Depth profiles of radiocarbon and carbon isotopic compositions of organic matter and CO2 in a forest soil. *Journal of Environmental Radioactivity*, *90*(3), 210–223. <https://doi.org/10.1016/j.jenvrad.2006.07.003>
Loisel, J., & Garneau, M. (2010). Late holocene paleoecohydrology and carbon accumulation estimates from two boreal peat bogs in eastern canada: Potential and limits of multi-proxy archives. *Palaeogeography, Palaeoclimatology, Palaeoecology*, *291*(3-4), 493–533. <https://doi.org/10.1016/j.palaeo.2010.03.020>
Loisel, J., Yu, Z., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J., Anderson, D., Andersson, S., Bochicchio, C., Barber, K., Belyea, L. R., Bunbury, J., Chambers, F. M., Charman, D. J., Vleeschouwer, F. D., Fiałkiewicz-Kozieł, B., Finkelstein, S. A., Gałka, M., Garneau, M., … Zhou, W. (2014). A database and synthesis of northern peatland soil properties and holocene carbon and nitrogen accumulation. *The Holocene*, *24*(9), 1028–1042. <https://doi.org/10.1177/0959683614538073>
Lupascu, Massimo, Akhtar, H., Smith, T. E. L., & Sukri, R. S. (2020). Post-fire carbon dynamics in the tropical peat swamp forests of brunei reveal long-term elevated CH4 flux. *Global Change Biology*, *26*(9), 5125–5145. <https://doi.org/10.1111/gcb.15195>
Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (2018). Winter ecosystem respiration and sources of CO2 from the high arctic tundra of svalbard: Response to a deeper snow experiment. *Journal of Geophysical Research: Biogeosciences*, *123*(8), 2627–2642. <https://doi.org/10.1029/2018jg004396>
Lupascu, M., Welker, J. M., Seibt, U., Maseyk, K., Xu, X., & Czimczik, C. I. (2013). High arctic wetting reduces permafrost carbon feedbacks to climate warming. *Nature Climate Change*, *4*(1), 51–55. <https://doi.org/10.1038/nclimate2058>
Lybrand, R. A., Heckman, K., & Rasmussen, C. (2017). Soil organic carbon partitioning and ∆14C variation in desert and conifer ecosystems of southern arizona. *Biogeochemistry*, *134*(3), 261–277. <https://doi.org/10.1007/s10533-017-0360-7>
Mann, P. J., Eglinton, T. I., McIntyre, C. P., Zimov, N., Davydova, A., Vonk, J. E., Holmes, R. M., & Spencer, R. G. M. (2015). Utilization of ancient permafrost carbon in headwaters of arctic fluvial networks. *Nature Communications*, *6*(1). <https://doi.org/10.1038/ncomms8856>
Marin-Spiotta, E., Chadwick, O. A., Kramer, M., & Carbone, M. S. (2011). Carbon delivery to deep mineral horizons in hawaiian rain forest soils. *Journal of Geophysical Research*, *116*(G3). <https://doi.org/10.1029/2010jg001587>
Mariotti, A., & Peterschmitt, E. (1994). Forest savanna ecotone dynamics in india as revealed by carbon isotope ratios of soil organic matter. *Oecologia*, *97*(4), 475–480. <https://doi.org/10.1007/bf00325885>
Marı́n-Spiotta, E., Swanston, C. W., Torn, M. S., Silver, W. L., & Burton, S. D. (2008). Chemical and mineral control of soil carbon turnover in abandoned tropical pastures. *Geoderma*, *143*(1-2), 49–62. <https://doi.org/10.1016/j.geoderma.2007.10.001>
Martel, Y. A., & Paul, E. A. (1974). The use of radiocarbon dating of organic matter in the study of soil genesis. *Soil Science Society of America Journal*, *38*(3), 501–506. <https://doi.org/10.2136/sssaj1974.03615995003800030033x>
Martens, C. S., Kelley, C. A., Chanton, J. P., & Showers, W. J. (1992). Carbon and hydrogen isotopic characterization of methane from wetlands and lakes of the yukon-kuskokwim delta, western alaska. *Journal of Geophysical Research*, *97*(D15), 16689. <https://doi.org/10.1029/91jd02885>
Martinelli, I. A., Pessenda, L. C. R., Espinoza, E., Camargo, P. B., Telles, F. C., Cerri, C. C., Victoria, R. L., Aravena, R., Richey, J., & Trumbore, S. (1996). Carbon-13 variation with depth in soils of brazil and climate change during the quaternary. *Oecologia*, *106*(3), 376–381. <https://doi.org/10.1007/bf00334565>
Masiello, C. A., Chadwick, O. A., Southon, J., Torn, M. S., & Harden, J. W. (2004). Weathering controls on mechanisms of carbon storage in grassland soils. *Global Biogeochemical Cycles*, *18*(4), n/a–n/a. <https://doi.org/10.1029/2004gb002219>
Massa, C., Beilman, D. W., Nichols, J. E., & Timm, O. E. (2021). Central pacific hydroclimate over the last 45,000 years: Molecular-isotopic evidence from leaf wax in a Hawaiʻi peatland. *Quaternary Science Reviews*, *253*, 106744. <https://doi.org/10.1016/j.quascirev.2020.106744>
Mayer, S., Schwindt, D., Steffens, M., Völkel, J., & Kögel-Knabner, I. (2018). Drivers of organic carbon allocation in a temperate slope-floodplain catena under agricultural use. *Geoderma*, *327*, 63–72. <https://doi.org/10.1016/j.geoderma.2018.04.021>
McClaran, M. P., & Umlauf, M. (2000). Desert grassland dynamics estimated from carbon isotopes in grass phytoliths and soil organic matter. *Journal of Vegetation Science*, *11*(1), 71–76. <https://doi.org/10.2307/3236777>
McFarlane, Karis J., Hanson, P. J., Iversen, C. M., Phillips, J. R., & Brice, D. J. (2018). Local spatial heterogeneity of holocene carbon accumulation throughout the peat profile of an ombrotrophic northern minnesota bog. *Radiocarbon*, *60*(3), 941–962. <https://doi.org/10.1017/rdc.2018.37>
McFarlane, Karis J., Torn, M. S., Hanson, P. J., Porras, R. C., Swanston, C. W., Callaham, M. A., & Guilderson, T. P. (2012). Comparison of soil organic matter dynamics at five temperate deciduous forests with physical fractionation and radiocarbon measurements. *Biogeochemistry*, *112*(1-3), 457–476. <https://doi.org/10.1007/s10533-012-9740-1>
Mergelov, N., Dolgikh, A., Shorkunov, I., Zazovskaya, E., Soina, V., Yakushev, A., Fedorov-Davydov, D., Pryakhin, S., & Dobryansky, A. (2020). Hypolithic communities shape soils and organic matter reservoirs in the ice-free landscapes of east antarctica. *Scientific Reports*, *10*(1). <https://doi.org/10.1038/s41598-020-67248-3>
Meyer, S., Leifeld, J., Bahn, M., & Fuhrer, J. (2012). Free and protected soil organic carbon dynamics respond differently to abandonment of mountain grassland. *Biogeosciences*, *9*(2), 853–865. <https://doi.org/10.5194/bg-9-853-2012>
Mikhailova, E., Bryant, R., Galbraith, J., Wang, Y., Post, C., Khokhlova, O., Schlautman, M., Cope, M., & Shen, Z. (2018). Pedogenic carbonates and radiocarbon isotopes of organic carbon at depth in the russian chernozem. *Geosciences*, *8*(12), 458. <https://doi.org/10.3390/geosciences8120458>
Mikutta, R., Schaumann, G. E., Gildemeister, D., Bonneville, S., Kramer, M. G., Chorover, J., Chadwick, O. A., & Guggenberger, G. (2009). Biogeochemistry of mineralorganic associations across a long-term mineralogical soil gradient (0.34100kyr), hawaiian islands. *Geochimica Et Cosmochimica Acta*, *73*(7), 2034–2060. <https://doi.org/10.1016/j.gca.2008.12.028>
Milton, G. M., & Kramer, S. J. (1997). Using 14C as a tracer of carbon accumulation and turnover in soils. *Radiocarbon*, *40*(2), 999–1011. <https://doi.org/10.1017/s003382220001897x>
Monreal, C. M., Schulten, H.-R., & Kodama, H. (1997). Age, turnover and molecular diversity of soil organic matter in aggregates of a gleysol. *Canadian Journal of Soil Science*, *77*(3), 379–388. <https://doi.org/10.4141/s95-064>
Mourik, J. M. van, Nierop, K. G. J., & Vandenberghe, D. A. G. (2010). Radiocarbon and optically stimulated luminescence dating based chronology of a polycyclic driftsand sequence at weerterbergen (SE netherlands). *CATENA*, *80*(3), 170–181. <https://doi.org/10.1016/j.catena.2009.11.004>
Mueller, C. W., Gutsch, M., Kothieringer, K., Leifeld, J., Rethemeyer, J., Brueggemann, N., & Kögel-Knabner, I. (2014). Bioavailability and isotopic composition of CO2 released from incubated soil organic matter fractions. *Soil Biology and Biochemistry*, *69*, 168–178. <https://doi.org/10.1016/j.soilbio.2013.11.006>
Muhr, J., & Borken, W. (2009). Delayed recovery of soil respiration after wetting of dry soil further reduces c losses from a norway spruce forest soil. *Journal of Geophysical Research*, *114*(G4). <https://doi.org/10.1029/2009jg000998>
Myers-Smith, I. H., Harden, J. W., Wilmking, M., Fuller, C. C., McGuire, A. D., & Chapin, F. S. (2008). Wetland succession in a permafrost collapse: Interactions between fire and thermokarst. *Biogeosciences*, *5*(5), 1273–1286. <https://doi.org/10.5194/bg-5-1273-2008>
Nagy, R. C., Porder, S., Brando, P., Davidson, E. A., Silva Figueira, A. M. e, Neill, C., Riskin, S., & Trumbore, S. (2018). Soil carbon dynamics in soybean cropland and forests in mato grosso, brazil. *Journal of Geophysical Research: Biogeosciences*, *123*(1), 18–31. <https://doi.org/10.1002/2017jg004269>
Nakagawa, F., Yoshida, N., Nojiri, Y., & Makarov, VladimirN. (2002). Production of methane from alasses in eastern siberia: Implications from its 14C and stable isotopic compositions. *Global Biogeochemical Cycles*, *16*(3), 14-1-14-15. <https://doi.org/10.1029/2000gb001384>
Natali, S. M., Schuur, E. A. G., Mauritz, M., Schade, J. D., Celis, G., Crummer, K. G., Johnston, C., Krapek, J., Pegoraro, E., Salmon, V. G., & Webb, E. E. (2015). Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. *Journal of Geophysical Research: Biogeosciences*, *120*(3), 525–537. <https://doi.org/10.1002/2014jg002872>
NATALI, S. M., SCHUUR, E. A. G., TRUCCO, C., PRIES, C. E. H., CRUMMER, K. G., & LOPEZ, A. F. B. (2011). Effects of experimental warming of air, soil and permafrost on carbon balance in alaskan tundra. *Global Change Biology*, *17*(3), 1394–1407. <https://doi.org/10.1111/j.1365-2486.2010.02303.x>
Nave, Lucas E., Drevnick, P. E., Heckman, K. A., Hofmeister, K. L., Veverica, T. J., & Swanston, C. W. (2017). Soil hydrology, physical and chemical properties and the distribution of carbon and mercury in a postglacial lake-plain wetland. *Geoderma*, *305*, 40–52. <https://doi.org/10.1016/j.geoderma.2017.05.035>
Nave, Lucas E., Heckman, K. A., Bowman, M., Gallo, A. C., Hatten, J., Matosziuk, L., Possinger, A., SanClements, M., Strahm, B., Weiglein, T. L., & Swanston, C. (2021). *Soil organic matter mechanisms of stabilization (SOMMOS) - enhanced soil characterization data from 40 national ecological observatory network (NEON) sites*. Environmental Data Initiative. <https://doi.org/10.6073/PASTA/4D5F03A4619E834C031AB4A6A121DE12>
Neff, J. C., Finlay, J. C., Zimov, S. A., Davydov, S. P., Carrasco, J. J., Schuur, E. A. G., & Davydova, A. I. (2006). Seasonal changes in the age and structure of dissolved organic carbon in siberian rivers and streams. *Geophysical Research Letters*, *33*(23). <https://doi.org/10.1029/2006gl028222>
Negandhi, K., Laurion, I., Whiticar, M. J., Galand, P. E., Xu, X., & Lovejoy, C. (2013). Small thaw ponds: An unaccounted source of methane in the canadian high arctic. *PLoS ONE*, *8*(11), e78204. <https://doi.org/10.1371/journal.pone.0078204>
Nichols, H. (1967). Pollen diagrams from sub-arctic central canada. *Science*, *155*(3770), 1665–1668. <https://doi.org/10.1126/science.155.3770.1665>
Nowinski, N. S., Taneva, L., Trumbore, S. E., & Welker, J. M. (2010). Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. *Oecologia*, *163*(3), 785–792. <https://doi.org/10.1007/s00442-009-1556-x>
Nowinski, N. S., Trumbore, S. E., Jimenez, G., & Fenn, M. E. (2009). Alteration of belowground carbon dynamics by nitrogen addition in southern california mixed conifer forests. *Journal of Geophysical Research: Biogeosciences*, *114*(G2), n/a–n/a. <https://doi.org/10.1029/2008jg000801>
O’Brien, S. L., Jastrow, J. D., McFarlane, K. J., Guilderson, T. P., & Gonzalez-Meler, M. A. (2011). Decadal cycling within long-lived carbon pools revealed by dual isotopic analysis of mineral-associated soil organic matter. *Biogeochemistry*, *112*(1-3), 111–125. <https://doi.org/10.1007/s10533-011-9673-0>
O’Donnell, J. A., Jorgenson, M. T., Harden, J. W., McGuire, A. D., Kanevskiy, M. Z., & Wickland, K. P. (2011). The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an alaskan peatland. *Ecosystems*, *15*(2), 213–229. <https://doi.org/10.1007/s10021-011-9504-0>
OBrien, B. J. (1986). The use of natural and anthropogenic 14C to investigate the dynamics of soil organic carbon. *Radiocarbon*, *28*(2A), 358–362. <https://doi.org/10.1017/s0033822200007463>
ODonnell, J. A., Aiken, G. R., Walvoord, M. A., Raymond, P. A., Butler, K. D., Dornblaser, M. M., & Heckman, K. (2014). Using dissolved organic matter age and composition to detect permafrost thaw in boreal watersheds of interior alaska. *Journal of Geophysical Research: Biogeosciences*, *119*(11), 2155–2170. <https://doi.org/10.1002/2014jg002695>
ODONNELL, J. A., HARDEN, J. W., McGUIRE, A. D., KANEVSKIY, M. Z., JORGENSON, M. T., & XU, X. (2010). The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior alaska: Implications for post-thaw carbon loss. *Global Change Biology*, *17*(3), 1461–1474. <https://doi.org/10.1111/j.1365-2486.2010.02358.x>
Ohno, T., Heckman, K. A., Plante, A. F., Fernandez, I. J., & Parr, T. B. (2017). 14C mean residence time and its relationship with thermal stability and molecular composition of soil organic matter: A case study of deciduous and coniferous forest types. *Geoderma*, *308*, 1–8. <https://doi.org/10.1016/j.geoderma.2017.08.023>
OKSANEN, P. O. (2008). Holocene development of the vaisjeäggi palsa mire, finnish lapland. *Boreas*, *35*(1), 81–95. <https://doi.org/10.1111/j.1502-3885.2006.tb01114.x>
Oksanen, P. O., Kuhry, P., & Alekseeva, R. N. (2001). Holocene development of the rogovaya river peat plateau, european russian arctic. *The Holocene*, *11*(1), 25–40. <https://doi.org/10.1191/095968301675477157>
Oksanen, Pirita O., Kuhry, P., & Alekseeva, R. N. (2005). Holocene development and permafrost history of the usinsk mire, northeast european russia. *Géographie Physique Et Quaternaire*, *57*(2-3), 169–187. <https://doi.org/10.7202/011312ar>
OVENDEN, L. (2008). Vegetation history of a polygonal peatland, northern, yukon. *Boreas*, *11*(3), 209–224. <https://doi.org/10.1111/j.1502-3885.1982.tb00715.x>
Page, S. E., Wűst, R. A. J., Weiss, D., Rieley, J. O., Shotyk, W., & Limin, S. H. (2004). A record of late pleistocene and holocene carbon accumulation and climate change from an equatorial peat bog(kalimantan, indonesia): Implications for past, present and future carbon dynamics. *Journal of Quaternary Science*, *19*(7), 625–635. <https://doi.org/10.1002/jqs.884>
Panova, N. K., Trofimova, S. S., Antipina, T. G., Zinoviev, E. V., Gilev, A. V., & Erokhin, N. G. (2010). Holocene dynamics of vegetation and ecological conditions in the southern yamal peninsula according to the results of comprehensive analysis of a relict peat bog deposit. *Russian Journal of Ecology*, *41*(1), 20–27. <https://doi.org/10.1134/s1067413610010042>
Paul, E. A., Collins, H. P., & Leavitt, S. W. (2001). Dynamics of resistant soil carbon of midwestern agricultural soils measured by naturally occurring 14C abundance. *Geoderma*, *104*(3-4), 239–256. <https://doi.org/10.1016/s0016-7061(01)00083-0>
Paul, E. A., Follett, R. F., Leavitt, S. W., Halvorson, A., Peterson, G. A., & Lyon, D. J. (1997). Radiocarbon dating for determination of soil organic matter pool sizes and dynamics. *Soil Science Society of America Journal*, *61*(4), 1058–1067. <https://doi.org/10.2136/sssaj1997.03615995006100040011x>
Pedron, S., Holden, S. R., Welker, J. M., Ziolkowski, L. A., Mortero, G., Li, H., Walker, J., Xu, X., & Czimczik, C. I. (2019). *Soil radiocarbon from moist acidic tussock and erect shrub tundra at toolik field station*. Zenodo. <https://doi.org/10.5281/ZENODO.3370053>
Pegoraro, E. F., Mauritz, M. E., Ogle, K., Ebert, C. H., & Schuur, E. A. G. (2020). Lower soil moisture and deep soil temperatures in thermokarst features increase old soil carbon loss after 10 years of experimental permafrost warming. *Global Change Biology*, *27*(6), 1293–1308. <https://doi.org/10.1111/gcb.15481>
Pegoraro, E., Mauritz, M., Bracho, R., Ebert, C., Dijkstra, P., Hungate, B. A., Konstantinidis, K. T., Luo, Y., Schädel, C., Tiedje, J. M., Zhou, J., & Schuur, E. A. G. (2019). Glucose addition increases the magnitude and decreases the age of soil respired carbon in a long-term permafrost incubation study. *Soil Biology and Biochemistry*, *129*, 201–211. <https://doi.org/10.1016/j.soilbio.2018.10.009>
Pérez, T., Garcia-Montiel, D., Trumbore, S., Tyler, S., Camargo, P. de, Moreira, M., Piccolo, M., & Cerri, C. (2006). NITROUS OXIDE NITRIFICATION AND DENITRIFICATION 15N ENRICHMENT FACTORS FROM AMAZON FOREST SOILS. *Ecological Applications*, *16*(6), 2153–2167. [https://doi.org/10.1890/1051-0761(2006)016\[2153:nonadn\]2.0.co;2](https://doi.org/10.1890/1051-0761(2006)016[2153:nonadn]2.0.co;2)
Pessenda, L. C. R., Gouveia, S. E. M., & Aravena, R. (2001). Radiocarbon dating of total soil organic matter and humin fraction and its comparison with 14C ages of fossil charcoal. *Radiocarbon*, *43*(2B), 595–601. <https://doi.org/10.1017/s0033822200041242>
Pessenda, L. C. R., Gouveia, S. E. M., Aravena, R., Gomes, B. M., Boulet, R., & Ribeiro, A. S. (1997). 14C dating and stable carbon isotopes of soil organic matter in forestsavanna boundary areas in the southern brazilian amazon region. *Radiocarbon*, *40*(2), 1013–1022. <https://doi.org/10.1017/s0033822200018981>
Pessenda, L. C. R., Valencia, E. P. E., Camargo, P. B., Telles, E. C. C., Martinelli, L. A., Cerri, C. C., Aravena, R., & Rozanski, K. (1996). Natural radiocarbon measurements in brazilian soils developed on basic rocks. *Radiocarbon*, *38*(2), 203–208. <https://doi.org/10.1017/s0033822200017574>
PETEET, D., ANDREEV, A., BARDEEN, W., & MISTRETTA, F. (2008). Long-term arctic peatland dynamics, vegetation and climate history of the pur-taz region, western siberia. *Boreas*, *27*(2), 115–126. <https://doi.org/10.1111/j.1502-3885.1998.tb00872.x>
Phillips, C. L., McFarlane, K. J., Risk, D., & Desai, A. R. (2013). Biological and physical influences on soil 14CO2 seasonal dynamics in a temperate hardwood forest. *Biogeosciences*, *10*(12), 7999–8012. <https://doi.org/10.5194/bg-10-7999-2013>
Phillips, S., & Bustin, R. M. (1996). Sedimentology of the changuinola peat deposit: Organic and clastic sedimentary response to punctuated coastal subsidence. *Geological Society of America Bulletin*, *108*(7), 794–814. [https://doi.org/10.1130/0016-7606(1996)108\<0794:sotcpd\>2.3.co;2](https://doi.org/10.1130/0016-7606(1996)108<0794:sotcpd>2.3.co;2)
Plante, A. (2013). Distribution of radiocarbon ages in soil organic matter by thermal fractionation. *Radiocarbon*, *55*(34). <https://doi.org/10.2458/azu_js_rc.55.16310>
Posada, J. M., & Schuur, E. A. G. (2011). Relationships among precipitation regime, nutrient availability, and carbon turnover in tropical rain forests. *Oecologia*, *165*(3), 783–795. <https://doi.org/10.1007/s00442-010-1881-0>
Pries, C. E. H., Bird, J. A., Castanha, C., Hatton, P.-J., & Torn, M. S. (2017). Long term decomposition: The influence of litter type and soil horizon on retention of plant carbon and nitrogen in soils. *Biogeochemistry*, *134*(1-2), 5–16. <https://doi.org/10.1007/s10533-017-0345-6>
Pries, C. E. H., Schuur, E. A. G., & Crummer, K. G. (2011). Holocene carbon stocks and carbon accumulation rates altered in soils undergoing permafrost thaw. *Ecosystems*, *15*(1), 162–173. <https://doi.org/10.1007/s10021-011-9500-4>
Pries, C. E. H., Schuur, E. A. G., & Crummer, K. G. (2012). Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using d13C and ∆14C. *Global Change Biology*, *19*(2), 649–661. <https://doi.org/10.1111/gcb.12058>
Pries, C. E. H., Schuur, E. A. G., Natali, S. M., & Crummer, K. G. (2015). Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra. *Nature Climate Change*, *6*(2), 214–218. <https://doi.org/10.1038/nclimate2830>
Quéro, S., Hatté, C., Cornu, S., Duvivier, A., Cam, N., Jamoteau, F., Borschneck, D., & Basile-Doelsch, I. (2022). Dynamics of carbon loss from an arenosol by a forest to vineyard land use change on a centennial scale. *SOIL*, *8*(2), 517–539. <https://doi.org/10.5194/soil-8-517-2022>
Quideau, S. A., Chadwick, O. A., Trumbore, S. E., Johnson-Maynard, J. L., Graham, R. C., & Anderson, M. A. (2001). Vegetation control on soil organic matter dynamics. *Organic Geochemistry*, *32*(2), 247–252. <https://doi.org/10.1016/s0146-6380(00)00171-6>
Rabbi, S. M. F., Hua, Q., Daniel, H., Lockwood, P. V., Wilson, B. R., & Young, I. M. (2013). Mean residence time of soil organic carbon in aggregates under contrasting land uses based on radiocarbon measurements. *Radiocarbon*, *55*(1), 127–139. <https://doi.org/10.2458/azu_js_rc.v55i1.16179>
Rasmussen, C., Throckmorton, H., Liles, G., Heckman, K., Meding, S., & Horwath, W. (2018). Controls on soil organic carbon partitioning and stabilization in the california sierra nevada. *Soil Systems*, *2*(3), 41. <https://doi.org/10.3390/soilsystems2030041>
Rasmussen, C., Torn, M. S., & Southard, R. J. (2005). Mineral assemblage and aggregates control carbon dynamics in a california conifer forest. *Soil Science Society of America Journal*, *69*(6), 1711–1721. <https://doi.org/10.2136/sssaj2005.0040>
Rasmussen, C., & White, D. A. (2010). Vegetation effects on soil organic carbon quality in an arid hyperthermic ecosystem. *Soil Science*, *175*(9), 438–446. <https://doi.org/10.1097/ss.0b013e3181f38400>
Reichenbach, M., Fiener, P., Garland, G., Griepentrog, M., Six, J., & Doetterl, S. (2021). *The role of geochemistry in organic carbon stabilization in tropical rainforest soils*. <https://doi.org/10.5194/soil-2020-92>
Resh, S. C., Binkley, D., & Parrotta, J. A. (2002). Greater soil carbon sequestration under nitrogen-fixing trees compared with eucalyptus species. *Ecosystems*, *5*(3), 217–231. <https://doi.org/10.1007/s10021-001-0067-3>
Rethemeyer, J., Kramer, C., Gleixner, G., John, B., Yamashita, T., Flessa, H., Andersen, N., Nadeau, M.-J., & Grootes, P. M. (2005). Transformation of organic matter in agricultural soils: Radiocarbon concentration versus soil depth. *Geoderma*, *128*(1-2), 94–105. <https://doi.org/10.1016/j.geoderma.2004.12.017>
Richter, D. D., Markewitz, D., Trumbore, S. E., & Wells, C. G. (1999). Rapid accumulation and turnover of soil carbon in a re-establishing forest. *Nature*, *400*(6739), 56–58. <https://doi.org/10.1038/21867>
Robinson, S. D. (2006). Carbon accumulation in peatlands, southwestern northwest territories, canada. *Canadian Journal of Soil Science*, *86*(Special Issue), 305–319. <https://doi.org/10.4141/s05-086>
Rogers, B. M., Veraverbeke, S., Azzari, G., Czimczik, C. I., Holden, S. R., Mouteva, G. O., Sedano, F., Treseder, K. K., & Randerson, J. T. (2014). Quantifying fire-wide carbon emissions in interior alaska using field measurements and landsat imagery. *Journal of Geophysical Research: Biogeosciences*, *119*(8), 1608–1629. <https://doi.org/10.1002/2014jg002657>
Rumpel, C., Chaplot, V., Chabbi, A., Largeau, C., & Valentin, C. (2008). Stabilisation of HF soluble and HCl resistant organic matter in sloping tropical soils under slash and burn agriculture. *Geoderma*, *145*(3-4), 347–354. <https://doi.org/10.1016/j.geoderma.2008.04.001>
Rumpel, C., Kögel-Knabner, I., & Bruhn, F. (2002). Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. *Organic Geochemistry*, *33*(10), 1131–1142. <https://doi.org/10.1016/s0146-6380(02)00088-8>
Ruwaimana, M., Anshari, G. Z., Silva, L. C. R., & Gavin, D. G. (2020). The oldest extant tropical peatland in the world: A major carbon reservoir for at least 47000 years. *Environmental Research Letters*, *15*(11), 114027. <https://doi.org/10.1088/1748-9326/abb853>
Saiz, G., Bird, M., Wurster, C., Quesada, C. A., Ascough, P., Domingues, T., Schrodt, F., Schwarz, M., Feldpausch, T. R., Veenendaal, E., Djagbletey, G., Jacobsen, G., Hien, F., Compaore, H., Diallo, A., & Lloyd, J. (2015). The influence of C3 and C4 vegetation on soil organic matter dynamics in contrasting semi-natural tropical ecosystems. *Biogeosciences*, *12*(16), 5041–5059. <https://doi.org/10.5194/bg-12-5041-2015>
Samson, D. O., Bhiry, N., & Lavoie, M. (2010). Late-holocene palaeoecology of a polygonal peatland on the south shore of hudson strait, northern québec, canada. *The Holocene*, *20*(4), 525–536. <https://doi.org/10.1177/0959683609356582>
Sanaiotti, T. M., Martinelli, L. A., Victoria, R. L., Trumbore, S. E., & Camargo, P. B. (2002). Past vegetation changes in amazon savannas determined using carbon isotopes of soil organic Matter1. *Biotropica*, *34*(1), 2–16. <https://doi.org/10.1111/j.1744-7429.2002.tb00237.x>
Sanderman, J., Creamer, C., Baisden, W. T., Farrell, M., & Fallon, S. (2017). Greater soil carbon stocks and faster turnover rates with increasing agricultural productivity. *SOIL*, *3*(1), 1–16. <https://doi.org/10.5194/soil-3-1-2017>
Sangok, F. E., Sugiura, Y., Maie, N., Melling, L., Nakamura, T., Ikeya, K., & Watanabe, A. (2020). Variations in the rate of accumulation and chemical structure of soil organic matter in a coastal peatland in sarawak, malaysia. *CATENA*, *184*, 104244. <https://doi.org/10.1016/j.catena.2019.104244>
Sannel, A. B. K., & Kuhry, P. (2008). Long-term stability of permafrost in subarctic peat plateaus, west-central canada. *The Holocene*, *18*(4), 589–601. <https://doi.org/10.1177/0959683608089658>
Savage, K. E., Parton, W. J., Davidson, E. A., Trumbore, S. E., & Frey, S. D. (2013). Long-term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest. *Global Change Biology*, *19*(8), 2389–2400. <https://doi.org/10.1111/gcb.12224>
Schaney, M. L., Kite, J. S., Schaney, C. R., Heckman, K., & Coughenour, C. (2020). Radiocarbon dating peatland development: Key steps in reconstructing past climate in the central appalachian mountains. *Quaternary Science Reviews*, *241*, 106387. <https://doi.org/10.1016/j.quascirev.2020.106387>
Scharpenseel, H. W., & Pietig, F. (1973). University of bonn natural radiocarbon measurements v. *Radiocarbon*, *15*(1), 13–41. <https://doi.org/10.1017/s0033822200058586>
Schimel, J. P., Wetterstedt, J. Å. M., Holden, P. A., & Trumbore, S. E. (2011). Drying/rewetting cycles mobilize old c from deep soils from a california annual grassland. *Soil Biology and Biochemistry*, *43*(5), 1101–1103. <https://doi.org/10.1016/j.soilbio.2011.01.008>
Schöning, I., & Kögel-Knabner, I. (2006). Chemical composition of young and old carbon pools throughout cambisol and luvisol profiles under forests. *Soil Biology and Biochemistry*, *38*(8), 2411–2424. <https://doi.org/10.1016/j.soilbio.2006.03.005>
Schrumpf, M., Kaiser, K., Guggenberger, G., Persson, T., Kögel-Knabner, I., & Schulze, E.-D. (2013). Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. *Biogeosciences*, *10*(3), 1675–1691. <https://doi.org/10.5194/bg-10-1675-2013>
Schulze, Kerstin, Borken, W., & Matzner, E. (2010). Dynamics of dissolved organic 14C in throughfall and soil solution of a norway spruce forest. *Biogeochemistry*, *106*(3), 461–473. <https://doi.org/10.1007/s10533-010-9526-2>
Schulze, K., Borken, W., Muhr, J., & Matzner, E. (2009). Stock, turnover time and accumulation of organic matter in bulk and density fractions of a podzol soil. *European Journal of Soil Science*, *60*(4), 567–577. <https://doi.org/10.1111/j.1365-2389.2009.01134.x>
Schuur, E. A. G., Chadwick, O. A., & Matson, P. A. (2001). CARBON CYCLING AND SOIL CARBON STORAGE IN MESIC TO WET HAWAIIAN MONTANE FORESTS. *Ecology*, *82*(11), 3182–3196. [https://doi.org/10.1890/0012-9658(2001)082\[3182:ccascs\]2.0.co;2](https://doi.org/10.1890/0012-9658(2001)082[3182:ccascs]2.0.co;2)
Schuur, E. A. G., & Trumbore, S. E. (2005). Partitioning sources of soil respiration in boreal black spruce forest using radiocarbon. *Global Change Biology*, *12*(2), 165–176. <https://doi.org/10.1111/j.1365-2486.2005.01066.x>
Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., & Osterkamp, T. E. (2009). The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. *Nature*, *459*(7246), 556–559. <https://doi.org/10.1038/nature08031>
Schwartz, D., Foresta, H. de, Mariotti, A., Balesdent, J., Massimba, J. P., & Girardin, C. (1996). Present dynamics of the savanna-forest boundary in the congolese mayombe: A pedological, botanical and isotopic (13C and 14C) study. *Oecologia*, *106*(4), 516–524. <https://doi.org/10.1007/bf00329710>
Shaw, DavidC., Franklin, JerryF., Bible, K., Klopatek, J., Freeman, E., Greene, S., & Parker, GeoffreyG. (2004). Ecological setting of the wind river old-growth forest. *Ecosystems*, *7*(5). <https://doi.org/10.1007/s10021-004-0135-6>
Shen, C., Yi, W., Sun, Y., Xing, C., Yang, Y., Yuan, C., Li, Z., Peng, S., An, Z., & Liu, T. (2001). Distribution of 14C and 13C in forest soils of the dinghushan biosphere reserve. *Radiocarbon*, *43*(2B), 671–678. <https://doi.org/10.1017/s0033822200041321>
Sierra, C. A., Jiménez, E. M., Reu, B., Peñuela, M. C., Thuille, A., & Quesada, C. A. (2013). Low vertical transfer rates of carbon inferred from radiocarbon analysis in an amazon podzol. *Biogeosciences*, *10*(6), 3455–3464. <https://doi.org/10.5194/bg-10-3455-2013>
*Soils developed in granitic alluvium near merced, california*. (1987). US Geological Survey. <https://doi.org/10.3133/b1590a>
Sollins, P., Kramer, M. G., Swanston, C., Lajtha, K., Filley, T., Aufdenkampe, A. K., Wagai, R., & Bowden, R. D. (2009). Sequential density fractionation across soils of contrasting mineralogy: Evidence for both microbial- and mineral-controlled soil organic matter stabilization. *Biogeochemistry*, *96*(1-3), 209–231. <https://doi.org/10.1007/s10533-009-9359-z>
Sollins, P., Swanston, C., Kleber, M., Filley, T., Kramer, M., Crow, S., Caldwell, B. A., Lajtha, K., & Bowden, R. (2006). Organic c and n stabilization in a forest soil: Evidence from sequential density fractionation. *Soil Biology and Biochemistry*, *38*(11), 3313–3324. <https://doi.org/10.1016/j.soilbio.2006.04.014>
Spielvogel, S., Prietzel, J., & Kgel-Knabner, I. (2008). Soil organic matter stabilization in acidic forest soils is preferential and soil type-specific. *European Journal of Soil Science*, *59*(4), 674–692. <https://doi.org/10.1111/j.1365-2389.2008.01030.x>
Staub, J. R., & Esterle, J. S. (1994). Peat-accumulating depositional systems of sarawak, east malaysia. *Sedimentary Geology*, *89*(1-2), 91–106. <https://doi.org/10.1016/0037-0738(94)90085-x>
Staub, J. R., & Esterle, J. S. (1993). Provenance and sediment dispersal in the rajang river delta/coastal plain system, sarawak, east malaysia. *Sedimentary Geology*, *85*(1-4), 191–201. <https://doi.org/10.1016/0037-0738(93)90083-h>
STAUB, J. R., & GASTALDO, R. A. (2003). LATE QUATERNARY SEDIMENTATION AND PEAT DEVELOPMENT IN THE RAJANG RIVER DELTA, SARAWAK, EAST MALAYSIA. In *Tropical deltas of southeast asia* (pp. 71–87). SEPM (Society for Sedimentary Geology). <https://doi.org/10.2110/pec.03.76.0071>
Stephan, S., Berrier, J., Petre, A. A. D., Jeanson, C., Kooistra, M. J., Scharpenseel, H. W., & Schiffmann, H. (1983). Characterization of in situ organic matter constituents in vertisols from argentina, using submicroscopic and cytochemical methods first report. *Geoderma*, *30*(1-4), 21–34. <https://doi.org/10.1016/0016-7061(83)90054-x>
Stoner, S. W., Hoyt, A. M., Trumbore, S., Sierra, C. A., Schrumpf, M., Doetterl, S., Baisden, W. T., & Schipper, L. A. (2021). Soil organic matter turnover rates increase to match increased inputs in grazed grasslands. *Biogeochemistry*, *156*(1), 145–160. <https://doi.org/10.1007/s10533-021-00838-z>
Stout, J. D., & Goh, K. M. (1980). The use of radiocarbon to measure the effects of earthworms on soil development. *Radiocarbon*, *22*(3), 892–896. <https://doi.org/10.1017/s0033822200010298>
Striegl, R. G., Dornblaser, M. M., Aiken, G. R., Wickland, K. P., & Raymond, P. A. (2007). Carbon export and cycling by the yukon, tanana, and porcupine rivers, alaska, 2001-2005. *Water Resources Research*, *43*(2). <https://doi.org/10.1029/2006wr005201>
Strobel, P., Kasper, T., Frenzel, P., Schittek, K., Quick, L. J., Meadows, M. E., Mäusbacher, R., & Haberzettl, T. (2019). Late quaternary palaeoenvironmental change in the year-round rainfall zone of south africa derived from peat sediments from vankervelsvlei. *Quaternary Science Reviews*, *218*, 200–214. <https://doi.org/10.1016/j.quascirev.2019.06.014>
Stubbins, A., Hood, E., Raymond, P. A., Aiken, G. R., Sleighter, R. L., Hernes, P. J., Butman, D., Hatcher, P. G., Striegl, R. G., Schuster, P., Abdulla, H. A. N., Vermilyea, A. W., Scott, D. T., & Spencer, R. G. M. (2012). Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers. *Nature Geoscience*, *5*(3), 198–201. <https://doi.org/10.1038/ngeo1403>
Swanston, C. W., Torn, M. S., Hanson, P. J., Southon, J. R., Garten, C. T., Hanlon, E. M., & Ganio, L. (2005). Initial characterization of processes of soil carbon stabilization using forest stand-level radiocarbon enrichment. *Geoderma*, *128*(1-2), 52–62. <https://doi.org/10.1016/j.geoderma.2004.12.015>
Swindles, G. T., Kelly, T. J., Roucoux, K. H., & Lawson, I. T. (2018). Response of testate amoebae to a late holocene ecosystem shift in an amazonian peatland. *European Journal of Protistology*, *64*, 13–19. <https://doi.org/10.1016/j.ejop.2018.03.002>
Swindles, G. T., Morris, P. J., Whitney, B., Galloway, J. M., Gałka, M., Gallego-Sala, A., Macumber, A. L., Mullan, D., Smith, M. W., Amesbury, M. J., Roland, T. P., Sanei, H., Patterson, R. T., Sanderson, N., Parry, L., Charman, D. J., Lopez, O., Valderamma, E., Watson, E. J., … Lähteenoja, O. (2017). Ecosystem state shifts during long-term development of an amazonian peatland. *Global Change Biology*, *24*(2), 738–757. <https://doi.org/10.1111/gcb.13950>
Szymanski, L. M., Sanford, G. R., Heckman, K. A., Jackson, R. D., & Marı́n-Spiotta, E. (2019). Conversion to bioenergy crops alters the amount and age of microbially-respired soil carbon. *Soil Biology and Biochemistry*, *128*, 35–44. <https://doi.org/10.1016/j.soilbio.2018.08.025>
Tan, W., Zhou, L., & Liu, K. (2013). Soil aggregate fraction-based 14C analysis and its application in the study of soil organic carbon turnover under forests of different ages. *Chinese Science Bulletin*, *58*(16), 1936–1947. <https://doi.org/10.1007/s11434-012-5660-7>
Tapia, E. M. de, Rubio, I. D., Castro, J. G., Solleiro, E., & Sedov, S. (2005). Radiocarbon dates from soil profiles in the teotihuacán valley, mexico: Indicators of geomorphological processes. *Radiocarbon*, *47*(1), 159–175. <https://doi.org/10.1017/s0033822200052279>
Taylor, A. J., Lai, C.-T., Hopkins, F. M., Wharton, S., Bible, K., Xu, X., Phillips, C., Bush, S., & Ehleringer, J. R. (2015). Radiocarbon-based partitioning of soil respiration in an old-growth coniferous forest. *Ecosystems*, *18*(3), 459–470. <https://doi.org/10.1007/s10021-014-9839-4>
Tefs, C., & Gleixner, G. (2012). Importance of root derived carbon for soil organic matter storage in a temperate old-growth beech forest evidence from c, n and 14C content. *Forest Ecology and Management*, *263*, 131–137. <https://doi.org/10.1016/j.foreco.2011.09.010>
Tegen, I., & Dörr, H. (1996). 14C measurements of soil organic matter, soil CO2 and dissolved organic carbon (19871992). *Radiocarbon*, *38*(2), 247–251. <https://doi.org/10.1017/s0033822200017628>
TELLES, E. D. C., DE CAMARGO, P. B., MARTINELLI, L. A., TRUMBORE, S. E., DA COSTA, E. S., SANTOS, J., HIGUCHI, N., OLIVEIRA, R. C. D., & MARKEWITZ, D. (2011). *LBA-ECO CD-08 carbon isotopes in belowground carbon pools, amazonas and para, brazil*. ORNL Distributed Active Archive Center. <https://doi.org/10.3334/ORNLDAAC/1025>
Tifafi, M., Camino-Serrano, M., Hatté, C., Morras, H., Moretti, L., Barbaro, S., Cornu, S., & Guenet, B. (2018). The use of radiocarbon (14C) to constrain carbon dynamics in the soil module of the land surface model ORCHIDEE (SVN r5165). *Geoscientific Model Development*, *11*(12), 4711–4726. <https://doi.org/10.5194/gmd-11-4711-2018>
Tonneijck, F. H., Plicht, J. van der, Jansen, B., Verstraten, J. M., & Hooghiemstra, H. (2006). Radiocarbon dating of soil organic matter fractions in andosols in northern ecuador. *Radiocarbon*, *48*(3), 337–353. <https://doi.org/10.1017/s0033822200038790>
Torn, M. S., Lapenis, A. G., Timofeev, A., Fischer, M. L., Babikov, B. V., & Harden, J. W. (2002). Organic carbon and carbon isotopes in modern and 100-year-old-soil archives of the russian steppe. *Global Change Biology*, *8*(10), 941–953. <https://doi.org/10.1046/j.1365-2486.2002.00477.x>
Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M., & Hendricks, D. M. (1997). Mineral control of soil organic carbon storage and turnover. *Nature*, *389*(6647), 170–173. <https://doi.org/10.1038/38260>
Torn, M. S., Vitousek, P. M., & Trumbore, S. E. (2005). The influence of nutrient availability on soil organic matter turnover estimated by incubations and radiocarbon modeling. *Ecosystems*, *8*(4), 352–372. <https://doi.org/10.1007/s10021-004-0259-8>
Treat, C. C., Jones, M. C., Camill, P., Gallego-Sala, A. V., Garneau, M., Harden, J. W., Hugelius, G., Klein, E. S., Kokfelt, U., Kuhry, P., Loisel, J., Mathijssen, P. J. H., O’Donnell, J. A., Oksanen, P. O., Ronkainen, T. M., Sannel, A. B. K., Talbot, J., Tarnocai, C., & Väliranta, M. (2016). *(Table S1) site locations of cores and descriptions*. PANGAEA - Data Publisher for Earth & Environmental Science. <https://doi.org/10.1594/PANGAEA.863689>
Tremblay, S., Bhiry, N., & Lavoie, M. (2014). Long-term dynamics of a palsa in the sporadic permafrost zone of northwestern quebec (canada). *Canadian Journal of Earth Sciences*, *51*(5), 500–509. <https://doi.org/10.1139/cjes-2013-0123>
Trumbore, Susan E. (1993). Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. *Global Biogeochemical Cycles*, *7*(2), 275–290. <https://doi.org/10.1029/93gb00468>
Trumbore, Susan E., Bubier, J. L., Harden, J. W., & Crill, P. M. (1999). Carbon cycling in boreal wetlands: A comparison of three approaches. *Journal of Geophysical Research: Atmospheres*, *104*(D22), 27673–27682. <https://doi.org/10.1029/1999jd900433>
Trumbore, Susan E., Chadwick, O. A., & Amundson, R. (1996). Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. *Science*, *272*(5260), 393–396. <https://doi.org/10.1126/science.272.5260.393>
Trumbore, Susan E., Davidson, E. A., Camargo, P. B. de, Nepstad, D. C., & Martinelli, L. A. (1995). Belowground cycling of carbon in forests and pastures of eastern amazonia. *Global Biogeochemical Cycles*, *9*(4), 515–528. <https://doi.org/10.1029/95gb02148>
Trumbore, S. E., & Harden, J. W. (1997). Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area. *Journal of Geophysical Research: Atmospheres*, *102*(D24), 28817–28830. <https://doi.org/10.1029/97jd02231>
Trumbore, S., Lawrence, C., & Khomo, L. (2021). *Radiocarbon in bulk and respired CO2 from the cowlitz river chronosequence, washington, USA*. Zenodo. <https://doi.org/10.5281/ZENODO.5168031>
Upton, A., Vane, C. H., Girkin, N., Turner, B. L., & Sjögersten, S. (2018). Does litter input determine carbon storage and peat organic chemistry in tropical peatlands? *Geoderma*, *326*, 76–87. <https://doi.org/10.1016/j.geoderma.2018.03.030>
Väliranta, M., Kaakinen, A., & Kuhry, P. (2003). Holocene climate and landscape evolution east of the pechora delta, east-european russian arctic. *Quaternary Research*, *59*(3), 335–344. <https://doi.org/10.1016/s0033-5894(03)00041-3>
Vardy, Sheila R., Warner, B. G., & Aravena, R. (1997). Holocene climate effects on the development of a peatland on the tuktoyaktuk peninsula, northwest territories. *Quaternary Research*, *47*(1), 90–104. <https://doi.org/10.1006/qres.1996.1869>
Vardy, Sheila R., Warner, B. G., & Aravena, R. (1998). *Climatic Change*, *40*(2), 285–313. <https://doi.org/10.1023/a:1005473021115>
VARDY, S. R., WARNER, B. G., & ASADA, T. (2008). Holocene environmental change in two polygonal peatlands, south-central nunavut, canada. *Boreas*, *34*(3), 324–334. <https://doi.org/10.1111/j.1502-3885.2005.tb01104.x>
Vardy, S. R., Warner, B. G., Turunen, J., & Aravena, R. (2000). Carbon accumulation in permafrost peatlands in the northwest territories and nunavut, canada. *The Holocene*, *10*(2), 273–280. <https://doi.org/10.1191/095968300671749538>
Vaughn, L. J. S., & Torn, M. S. (2019). 14C evidence that millennial and fast-cycling soil carbon are equally sensitive to warming. *Nature Climate Change*, *9*(6), 467–471. <https://doi.org/10.1038/s41558-019-0468-y>
Vaughn, L. J. S., & Torn, M. S. (2018). Radiocarbon measurements of ecosystem respiration and soil pore-space CO2 in utqiaġvik (barrow), alaska. *Earth System Science Data*, *10*(4), 1943–1957. <https://doi.org/10.5194/essd-10-1943-2018>
Vetter, L., Rosenheim, B. E., Fernandez, A., & Törnqvist, T. E. (2017). Short organic carbon turnover time and narrow 14C age spectra in early holocene wetland paleosols. *Geochemistry, Geophysics, Geosystems*, *18*(1), 142–155. <https://doi.org/10.1002/2016gc006526>
Voort, T. S. van der, Hagedorn, F., McIntyre, C., Zell, C., Walthert, L., Schleppi, P., Feng, X., & Eglinton, T. I. (2016). Variability in 14C contents of soil organic matter at the plot and regional scale across climatic and geologic gradients. *Biogeosciences*, *13*(11), 3427–3439. <https://doi.org/10.5194/bg-13-3427-2016>
Wagai, R., Kajiura, M., Asano, M., & Hiradate, S. (2015). Nature of soil organo-mineral assemblage examined by sequential density fractionation with and without sonication: Is allophanic soil different? *Geoderma*, *241-242*, 295–305. <https://doi.org/10.1016/j.geoderma.2014.11.028>
Wahlen, M., Tanaka, N., Henry, R., Deck, B., Zeglen, J., Vogel, J. S., Southon, J., Shemesh, A., Fairbanks, R., & Broecker, W. (1989). Carbon-14 in methane sources and in atmospheric methane: The contribution from fossil carbon. *Science*, *245*(4915), 286–290. <https://doi.org/10.1126/science.245.4915.286>
Waldron, S., Vihermaa, L., Evers, S., Garnett, M. H., Newton, J., & Henderson, A. C. G. (2019). C mobilisation in disturbed tropical peat swamps: Old DOC can fuel the fluvial efflux of old carbon dioxide, but site recovery can occur. *Scientific Reports*, *9*(1). <https://doi.org/10.1038/s41598-019-46534-9>
Waldrop, M. P., Harden, J. W., Turetsky, M. R., Petersen, D. G., McGuire, A. D., Briones, M. J. I., Churchill, A. C., Doctor, D. H., & Pruett, L. E. (2012). Bacterial and enchytraeid abundance accelerate soil carbon turnover along a lowland vegetation gradient in interior alaska. *Soil Biology and Biochemistry*, *50*, 188–198. <https://doi.org/10.1016/j.soilbio.2012.02.032>
Walter, K. M., Chanton, J. P., Chapin, F. S., Schuur, E. A. G., & Zimov, S. A. (2008). Methane production and bubble emissions from arctic lakes: Isotopic implications for source pathways and ages. *Journal of Geophysical Research*, *113*. <https://doi.org/10.1029/2007jg000569>
WANG, L., OUYANG, H., ZHOUM, C.-P., ZHANG, F., SONG, M.-H., & TIAN, Y.-Q. (2005). Soil organic matter dynamics along a vertical vegetation gradient in the gongga mountain on the tibetan plateau. *Journal of Integrative Plant Biology*, *47*(4), 411–420. <https://doi.org/10.1111/j.1744-7909.2005.00085.x>
Wang, X., Yoo, K., Mudd, S. M., Weinman, B., Gutknecht, J., & Gabet, E. J. (2018). Storage and export of soil carbon and mineral surface area along an erosional gradient in the sierra nevada, california. *Geoderma*, *321*, 151–163. <https://doi.org/10.1016/j.geoderma.2018.02.008>
Wang, Y., Amundson, R., & Niu, X.-F. (2000). Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurements of soil CO2 flux. *Global Biogeochemical Cycles*, *14*(1), 199–211. <https://doi.org/10.1029/1999gb900074>
Wang, Y., Amundson, R., & Trumbore, S. (1999). The impact of land use change on c turnover in soils. *Global Biogeochemical Cycles*, *13*(1), 47–57. <https://doi.org/10.1029/1998gb900005>
Wang, Y., Amundson, R., & Trumbore, S. (1996). Radiocarbon dating of soil organic matter. *Quaternary Research*, *45*(3), 282–288. <https://doi.org/10.1006/qres.1996.0029>
WERNER, K., TARASOV, P. E., ANDREEV, A. A., MÜLLER, S., KIENAST, F., ZECH, M., ZECH, W., & DIEKMANN, B. (2010). A 12.5-kyr history of vegetation dynamics and mire development with evidence of younger dryas larch presence in the verkhoyansk mountains, east siberia, russia. *Boreas*, *39*(1), 56–68. <https://doi.org/10.1111/j.1502-3885.2009.00116.x>
Wooller, M. J., Morgan, R., Fowell, S., Behling, H., & Fogel, M. (2007). A multiproxy peat record of holocene mangrove palaeoecology from twin cays, belize. *The Holocene*, *17*(8), 1129–1139. <https://doi.org/10.1177/0959683607082553>
Wunderlich, S., & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. *Biogeosciences*, *9*(8), 3477–3489. <https://doi.org/10.5194/bg-9-3477-2012>
Yu, Z., Campbell, I. D., Campbell, C., Vitt, D. H., Bond, G. C., & Apps, M. J. (2003). Carbon sequestration in western canadian peat highly sensitive to holocene wet-dry climate cycles at millennial timescales. *The Holocene*, *13*(6), 801–808. <https://doi.org/10.1191/0959683603hl667ft>
Yulianto, E., Rahardjo, A. T., Noeradi, D., Siregar, D. A., & Hirakawa, K. (2005). A holocene pollen record of vegetation and coastal environmental changes in the coastal swamp forest at batulicin, south kalimantan, indonesia. *Journal of Asian Earth Sciences*, *25*(1), 1–8. <https://doi.org/10.1016/j.jseaes.2004.01.005>
Zazovskaya, E., Mergelov, N., Shishkov, V., Dolgikh, A., Miamin, V., Cherkinsky, A., & Goryachkin, S. (2016). Radiocarbon age of soils in oases of east antarctica. *Radiocarbon*, *59*(2), 489–503. <https://doi.org/10.1017/rdc.2016.75>
Zhang, H., Gallego-Sala, A. V., Amesbury, M. J., Charman, D. J., Piilo, S. R., & Väliranta, M. M. (2018). Inconsistent response of arctic permafrost peatland carbon accumulation to warm climate phases. *Global Biogeochemical Cycles*, *32*(10), 1605–1620. <https://doi.org/10.1029/2018gb005980>
Zhang, X., Bianchi, T. S., Cui, X., Rosenheim, B. E., Ping, C.-L., Hanna, A. J. M., Kanevskiy, M., Schreiner, K. M., & Allison, M. A. (2017). Permafrost organic carbon mobilization from the watershed to the colville river delta: Evidence from 14C ramped pyrolysis and lignin biomarkers. *Geophysical Research Letters*, *44*(22). <https://doi.org/10.1002/2017gl075543>
Zibulski, R., Herzschuh, U., Pestryakova, L. A., Wolter, J., Müller, S., Schilling, N., Wetterich, S., Schirrmeister, L., & Tian, F. (2013). *River flooding as a driver of polygon dynamics: Modern vegetation data and a millennial peat record from the anabar river lowlands (arctic siberia)*. <https://doi.org/10.5194/bgd-10-4067-2013>
Zimmermann, C., & Lavoie, C. (2001). A paleoecological analysis of a southern permafrost peatland, charlevoix, quebec. *Canadian Journal of Earth Sciences*, *38*(6), 909–919. <https://doi.org/10.1139/e00-110>
Zimov, S. A., Voropaev, Y. V., Semiletov, I. P., Davidov, S. P., Prosiannikov, S. F., Chapin, F. S., Chapin, M. C., Trumbore, S., & Tyler, S. (1997). North siberian lakes: A methane source fueled by pleistocene carbon. *Science*, *277*(5327), 800–802. <https://doi.org/10.1126/science.277.5327.800>
Zoltai, S. C., & Johnson, J. D. (1985). Development of a treed bog island in a minerotrophic fen. *Canadian Journal of Botany*, *63*(6), 1076–1085. <https://doi.org/10.1139/b85-148>
Zoltai, S. C., & Tarnocai, C. (1975). Perennially frozen peatlands in the western arctic and subarctic of canada. *Canadian Journal of Earth Sciences*, *12*(1), 28–43. <https://doi.org/10.1139/e75-004>
Zuidhoff, F. S., & Kolstrup, E. (2000). Changes in palsa distribution in relation to climate change in laivadalen, northern sweden, especially 1960-1997. *Permafrost and Periglacial Processes*, *11*(1), 55–69. [https://doi.org/10.1002/(sici)1099-1530(200001/03)11:1\<55::aid-ppp338\>3.0.co;2-t](https://doi.org/10.1002/(sici)1099-1530(200001/03)11:1<55::aid-ppp338>3.0.co;2-t)